These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 6265763)
41. Relationship between protein rotational dynamics and phosphoenzyme decomposition in the sarcoplasmic reticulum Ca-ATPase. Squier TC; Thomas DD J Biol Chem; 1988 Jul; 263(19):9171-7. PubMed ID: 2837479 [TBL] [Abstract][Full Text] [Related]
42. [The effect of biologically active compounds on the enzymatic activity of sarcoplasmic reticulum (Ca2+,Mg2+)-dependent ATPase transformed by synthetic phospholipids]. Tat'ianenko LV; Gromova LA; Moshkovskiĭ IuSh Mol Biol (Mosk); 1984; 18(2):504-11. PubMed ID: 6144040 [TBL] [Abstract][Full Text] [Related]
43. Lipid fluidity directly modulates the overall protein rotational mobility of the Ca-ATPase in sarcoplasmic reticulum. Squier TC; Bigelow DJ; Thomas DD J Biol Chem; 1988 Jul; 263(19):9178-86. PubMed ID: 2837480 [TBL] [Abstract][Full Text] [Related]
44. Transfer of stearic acids from albumin to polymer-grafted lipid containing membranes probed by spin-label electron spin resonance. Pantusa M; Sportelli L; Bartucci R Biophys Chem; 2005 Apr; 114(2-3):121-7. PubMed ID: 15829345 [TBL] [Abstract][Full Text] [Related]
45. Structural changes of the sarcoplasmic reticulum Ca(II)-ATPase nucleotide binding domain by pH and La(III). Merino JM; Henao F; Gutiérrez-Merino C Arch Biochem Biophys; 1997 Dec; 348(1):152-6. PubMed ID: 9390185 [TBL] [Abstract][Full Text] [Related]
46. [Conformational changes at the ATP-catalytic site of the reconstituted sarcoplasmic reticulum Ca-ATPase under th action of pH, Ca2+, and lanthanides]. Vinokurov MG; Ivkova MN; Pechatnikov VA Biofizika; 1998; 43(3):496-502. PubMed ID: 9702344 [TBL] [Abstract][Full Text] [Related]
47. Plausible stoichiometry of the interacting nucleotide-binding sites in the Ca(2+)-ATPase from sarcoplasmic reticulum membranes. Merino JM; Gutiérrez-Merino C; Henao F Arch Biochem Biophys; 1999 Aug; 368(2):298-302. PubMed ID: 10441381 [TBL] [Abstract][Full Text] [Related]
48. Rotational dynamics of protein and boundary lipid in sarcoplasmic reticulum membrane. Thomas DD; Bigelow DJ; Squier TC; Hidalgo C Biophys J; 1982 Jan; 37(1):217-25. PubMed ID: 6275923 [TBL] [Abstract][Full Text] [Related]
49. [Modification of the functional properties of sarcoplasmic reticulum Ca-ATPase in hypercholesterolemia]. Kuz'mina IL; Ritov VB Biull Eksp Biol Med; 1986 Apr; 101(4):419-22. PubMed ID: 2938644 [TBL] [Abstract][Full Text] [Related]
50. TNP-AMP binding to the sarcoplasmic reticulum Ca(2+)-ATPase studied by infrared spectroscopy. Liu M; Barth A Biophys J; 2003 Nov; 85(5):3262-70. PubMed ID: 14581226 [TBL] [Abstract][Full Text] [Related]
52. [Role of lipid peroxidation in changes in the structure of Ca-ATPase in skeletal muscle sarcoplasmic reticulum during hypercholesterolemia]. Timofeev AA; Azizova OA; Chernysheva GV Biull Eksp Biol Med; 1985 Mar; 99(3):301-3. PubMed ID: 3157412 [TBL] [Abstract][Full Text] [Related]
53. Saturation transfer electron spin resonance study on the rotational diffusion of calcium- and magnesium-dependent adenosine triphosphatase in sarcoplasmic reticulum membranes. Kirino Y; Ohkuma T; Shimizu H J Biochem; 1978 Jul; 84(1):111-5. PubMed ID: 211120 [TBL] [Abstract][Full Text] [Related]
54. An iodoacetamide spin-label selectively labels a cysteine side chain in an occluded site on the sarcoplasmic reticulum Ca(2+)-ATPase. Wawrzynow A; Collins JH; Coan C Biochemistry; 1993 Oct; 32(40):10803-11. PubMed ID: 8399229 [TBL] [Abstract][Full Text] [Related]
55. The lipid-protein interaction in the membrane-bound Na+, K+-ATPase: a spin label study. Tabak M; Ruuge EK; Smirnova IN An Acad Bras Cienc; 1978 Mar; 50(1):77-86. PubMed ID: 149511 [TBL] [Abstract][Full Text] [Related]
56. A saturation transfer electron spin resonance study on the break in the Arrhenius plot for the rotational motion of Ca2+-dependent adenosine triphosphatase molecules in purified and lipid-replaced preparations of rabbit skeletal muscle sarcoplasmic reticulum. Kaizu T; Kirino Y; Shimizu H J Biochem; 1980 Dec; 88(6):1837-43. PubMed ID: 6257672 [TBL] [Abstract][Full Text] [Related]
57. Rotational motion of Ca-ATPase monitored by electron spin echoes. van der Struijf C; Pelupessy TP; van Faassen EE; Levine YK J Magn Reson B; 1996 May; 111(2):158-67. PubMed ID: 8661273 [TBL] [Abstract][Full Text] [Related]
58. Studies on conformational transitions of Ca2+, Mg2+-adenosine triphosphatase of sarcoplasmic reticulum. I. Selective labeling of functionally distinct sulfhydryl groups with conformational probes and evidence for a Ca2+-dependent conformational change. Yasuoka-Yabe K; Kawakita M J Biochem; 1983 Sep; 94(3):665-75. PubMed ID: 6139370 [TBL] [Abstract][Full Text] [Related]
59. Properties of detergent-solubilized and membranous (Ca2+ + Mg2+)-activated ATPase from sarcoplasmic reticulum as studied by sulfhydryl reactivity and ESR spectroscopy. Effect of protein-protein interactions. Andersen JP; le Maire M; Møller JV Biochim Biophys Acta; 1980 Dec; 603(1):84-100. PubMed ID: 6108784 [TBL] [Abstract][Full Text] [Related]
60. A spin-label and hydrogen-deuterium exchange reaction kinetics study of protein-lipid interactions in lipid-replaced Ca2+-ATPase of rabbit skeletal muscle sarcoplasmic reticulum. Higashi K; Kirino Y J Biochem; 1983 Dec; 94(6):1769-79. PubMed ID: 6323380 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]