These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 6265904)

  • 1. Specific binding of a prokaryotic ribosomal protein to a eukaryotic ribosomal RNA: implications for evolution and autoregulation.
    Gourse RL; Thurlow DL; Gerbi SA; Zimmermann RA
    Proc Natl Acad Sci U S A; 1981 May; 78(5):2722-6. PubMed ID: 6265904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The secondary structure of the protein L1 binding region of ribosomal 23S RNA. Homologies with putative secondary structures of the L11 mRNA and of a region of mitochondrial 16S rRNA.
    Branlant C; Krol A; Machatt A; Ebel JP
    Nucleic Acids Res; 1981 Jan; 9(2):293-307. PubMed ID: 7010313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence analysis of the transcribed and 5' non-transcribed regions of the ribosomal RNA gene in Dictyostelium discoideum.
    Ozaki T; Hoshikawa Y; Iida Y; Iwabuchi M
    Nucleic Acids Res; 1984 May; 12(10):4171-84. PubMed ID: 6328413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of the L1 binding site of 23S rRNA in Escherichia coli.
    Said B; Cole JR; Nomura M
    Nucleic Acids Res; 1988 Nov; 16(22):10529-45. PubMed ID: 3060846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The binding site of ribosomal protein L1 from Escherichia coli on the 23-S ribosomal RNA from Bacillus stearothermophilus. A possible base-pairing scheme differing from that proposed for Escherichia coli.
    Stanley J; Sloof P; Ebel JP
    Eur J Biochem; 1978 Apr; 85(1):309-16. PubMed ID: 416958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications.
    Clark CG; Tague BW; Ware VC; Gerbi SA
    Nucleic Acids Res; 1984 Aug; 12(15):6197-220. PubMed ID: 6147812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The binding site for ribosomal protein complex L8 within 23 s ribosomal RNA of Escherichia coli.
    Beauclerk AA; Cundliffe E; Dijk J
    J Biol Chem; 1984 May; 259(10):6559-63. PubMed ID: 6373761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of ribosomal proteins L25 from yeast and EL23 from E. coli with yeast 26S and mouse 28S rRNA.
    el-Baradi TT; de Regt VC; Planta RJ; Nierhaus KH; Raué HA
    Biochimie; 1987 Sep; 69(9):939-48. PubMed ID: 3126831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The binding site for ribosomal protein L11 within 23 S ribosomal RNA of Escherichia coli.
    Schmidt FJ; Thompson J; Lee K; Dijk J; Cundliffe E
    J Biol Chem; 1981 Dec; 256(23):12301-5. PubMed ID: 6271782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary structure of the Dictyostelium discoideum small subunit ribosomal RNA.
    Olsen GJ; McCarroll R; Sogin ML
    Nucleic Acids Res; 1983 Nov; 11(22):8037-49. PubMed ID: 6359065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of the binding site for ribosomal protein S8 within 16S ribosomal RNA from Escherichia coli.
    Gregory RJ; Zimmermann RA
    Nucleic Acids Res; 1986 Jul; 14(14):5761-76. PubMed ID: 3016664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of sequences common to the 25--28S-ribonucleic acid genes of Xenopus laevis and Neurospora crassa.
    Cox RA; Thompson RD
    Biochem J; 1980 Apr; 187(1):75-90. PubMed ID: 6250536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete nucleotide sequence of the 26S rRNA gene of Physarum polycephalum: its significance in gene evolution.
    Otsuka T; Nomiyama H; Yoshida H; Kukita T; Kuhara S; Sakaki Y
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3163-7. PubMed ID: 6304693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequence of Dictyostelium discoideum 5.8S ribosomal ribonucleic acid: evolutionary and secondary structural implications.
    Olsen GJ; Sogin ML
    Biochemistry; 1982 May; 21(10):2335-43. PubMed ID: 7093192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational regulation by ribosomal protein S8 in Escherichia coli: structural homology between rRNA binding site and feedback target on mRNA.
    Olins PO; Nomura M
    Nucleic Acids Res; 1981 Apr; 9(7):1757-64. PubMed ID: 6262737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence homologies between eukaryotic 5.8S rRNA and the 5' end of prokaryotic 23S rRNa: evidences for a common evolutionary origin.
    Jacq B
    Nucleic Acids Res; 1981 Jun; 9(12):2913-32. PubMed ID: 7024907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine structure of ribosomal RNA. IV. Extraordinary evolutionary conservation in sequences that flank introns in rDNA.
    Gourse RL; Gerbi SA
    Nucleic Acids Res; 1980 Aug; 8(16):3623-37. PubMed ID: 6253905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcription termination site of the ribosomal RNA operon in yeast.
    Veldman GM; Klootwijk J; de Jonge P; Leer RJ; Planta RJ
    Nucleic Acids Res; 1980 Nov; 8(22):5179-92. PubMed ID: 6258138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of eukaryotic ribosomal DNA.
    Gerbi SA
    Biosystems; 1986; 19(4):247-58. PubMed ID: 3026507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine structure of ribosomal RNA. III. Location of evolutionarily conserved regions within ribosomal DNA.
    Gourse RL; Gerbi SA
    J Mol Biol; 1980 Jun; 140(2):321-39. PubMed ID: 6253644
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.