These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 6266094)
1. [Potassium release from erythrocytes of different age rats in 9 simulated lactic acidosis]. Vereshchagina VM; Maevskii EI Ukr Biokhim Zh (1978); 1980; 52(5):556-60. PubMed ID: 6266094 [TBL] [Abstract][Full Text] [Related]
2. Effects and mechanisms of action of ionophorous antibiotics valinomycin and salinomycin-Na on Babesia gibsoni in vitro. Yamasaki M; Nakamura K; Tamura N; Hwang SJ; Yoshikawa M; Sasaki N; Ohta H; Yamato O; Maede Y; Takiguchi M J Parasitol; 2009 Dec; 95(6):1532-8. PubMed ID: 20929429 [TBL] [Abstract][Full Text] [Related]
3. [Relation between energy metabolism, Na+ and K+ levels, and Na,K-ATPase activity in erythrocytes and their volume and shape during overheating]. Bondarev DP; Kozlov NB Vopr Med Khim; 1988; 34(5):87-91. PubMed ID: 2851213 [TBL] [Abstract][Full Text] [Related]
4. [Analysis of the potassium outflow from the erythrocytes during physical stress and in a model of lactate acidosis]. Vereshchagina VM; Maevskiĭ EI Patol Fiziol Eksp Ter; 1980; (5):42-5. PubMed ID: 7422372 [No Abstract] [Full Text] [Related]
5. Increased Na+,K(+)-pump activity in erythrocytes of rabbits fed cholesterol. Makarov VL; Kuznetsov SR Int J Exp Pathol; 1995 Apr; 76(2):93-6. PubMed ID: 7786767 [TBL] [Abstract][Full Text] [Related]
6. Transport of sodium and protons and hypotonic haemolysis in the valinomycin-treated erythrocytes of rats with spontaneous hypertension. Orlov SN; Pokudin NI; Postnov YV J Hypertens; 1988 May; 6(5):351-9. PubMed ID: 2838546 [TBL] [Abstract][Full Text] [Related]
7. Characterisation of the potassium influx in rat erythrocytes. Ihrig I; Schönheit C; Häussner W; Bernhardt I Gen Physiol Biophys; 1992 Aug; 11(4):377-88. PubMed ID: 1330816 [TBL] [Abstract][Full Text] [Related]
8. [Effect of age on the activity of Mg-Na-K-ATPase, as well as on the K and Na concentration in human erythrocytes]. Platt D; Haas H Z Gerontol; 1979; 12(1):73-88. PubMed ID: 219631 [TBL] [Abstract][Full Text] [Related]
9. Human and dog erythrocytes: relationship between cellular ATP levels, ATP consumption and potassium concentrations. Miseta A; Somoskeoy S; Galambos C; Kellermayer M; Wheatley DN; Cameron IL Physiol Chem Phys Med NMR; 1992; 24(1):11-20. PubMed ID: 1317586 [TBL] [Abstract][Full Text] [Related]
10. [Characteristics of Na+/H+ metabolism in the erythrocytes of rats with spontaneous hypertension]. Pokudin NI; Orlov SN; Postnov IuV Biull Eksp Biol Med; 1987 Oct; 104(10):416-8. PubMed ID: 3676456 [TBL] [Abstract][Full Text] [Related]
11. On the mechanism of shrinkage-induced potassium influx in rat and human erythrocytes. Orlov SN; Pokudin NI; Gurlo TG; Okun IM; Aksentsev SL; Konev SV Gen Physiol Biophys; 1991 Aug; 10(4):359-71. PubMed ID: 1663056 [TBL] [Abstract][Full Text] [Related]
12. Explaining on request a correlation between membrane Na,K-ATPase and K+ content in erythrocytes and other findings in the preceding paper. Ling GN Physiol Chem Phys Med NMR; 1998; 30(1):89-97. PubMed ID: 9807237 [TBL] [Abstract][Full Text] [Related]
13. Catecholamine-stimulated potassium transport in erythrocytes from normal and obese subjects. Mazza P; Salvadori A; Baudo S; Fanari P; Fontana M; Ruga S; Longhini E Minerva Med; 1992 Oct; 83(10):615-9. PubMed ID: 1334239 [TBL] [Abstract][Full Text] [Related]
14. [Quantitative model of human erythrocyte glycolysis. Relationship between erythrocyte energy metabolism and Na+, K+-ATPase activity]. Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Kholodenko BN; Erlikh LI Biofizika; 1979; 24(3):489-94. PubMed ID: 223657 [TBL] [Abstract][Full Text] [Related]
15. [Dependence of [14C] nicotinate and [35S] lipoate transport to erythrocytes on their Mg2+, Na+, K+-ATPase activity]. Totskiĭ VN; Filippova LB Ukr Biokhim Zh (1978); 1979; 51(3):241-5. PubMed ID: 223261 [TBL] [Abstract][Full Text] [Related]
16. K(+)-permeability in diabetics and nondiabetics with and without renal insufficiency. Kraatz G; Wolf E; Gruska S Exp Clin Endocrinol Diabetes; 1997; 105 Suppl 2():19-21. PubMed ID: 9288537 [TBL] [Abstract][Full Text] [Related]
17. Activation of K+ channel and inhibition of Na(+)-K+ ATPase of human erythrocytes by cyclosporine: possible role in hyperpotassemia in kidney transplant recipients. Ihara H; Hosokawa S; Ogino T; Arima M; Ikoma F Transplant Proc; 1990 Aug; 22(4):1736-9. PubMed ID: 2167529 [No Abstract] [Full Text] [Related]
18. [Mechanism of the change in erythrocyte osmotic resistance in rats exposed to valinomycin: the features seen in spontaneous hypertension]. Orlov SN; Pokudin NI Biull Eksp Biol Med; 1986 Oct; 102(10):392-4. PubMed ID: 3768499 [TBL] [Abstract][Full Text] [Related]
19. [The effect of pentoxifylline on the Ca2+-induced potassium efflux and on the ATPase-activity of erythrocytes (author's transl)]. Porsche E; Stefanovich V Arzneimittelforschung; 1981; 31(5):825-8. PubMed ID: 6268121 [TBL] [Abstract][Full Text] [Related]
20. [The effect of hypothermic stress on Na,K-ATPase activity in rat erythrocytes]. Medvedeva IA; Maslova MN; Panov AA Fiziol Zh SSSR Im I M Sechenova; 1992 Nov; 78(11):119-24. PubMed ID: 1338875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]