These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 6266453)

  • 1. Preparation of photoreactive derivatives of glutathione and [9-(2-mercaptotryptophan)]corticotropin by selective modification of the sulfhydryl group.
    Muramoto K; Ramachandran J
    Biochemistry; 1981 Jun; 20(12):3376-80. PubMed ID: 6266453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreactive derivatives of corticotropin. 2. Preparation and characterization of 2-nitro-4(5)-azidophenylsulfenyl derivatives of corticotropin.
    Muramoto K; Ramachandran J
    Biochemistry; 1980 Jul; 19(14):3280-6. PubMed ID: 6250561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreactive derivatives of corticotropin. 1. Preparation and chracterization of 2,4-dinitro-5-azidophenylsulfenyl derivative of corticotropin.
    Canova-Davis E; Ramachandran J
    Biochemistry; 1980 Jul; 19(14):3275-80. PubMed ID: 6250560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreactive derivative of Kunitz's soybean trypsin inhibitor. Preparation by selective modification of a tryptophan residue and formation of a covalent complex of the modified inhibitor with trypsin.
    Ramachandran J; Smirnoff P; Birk Y
    Int J Pept Protein Res; 1984 Jan; 23(1):72-7. PubMed ID: 6698717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the corticotropin binding domain of bovine serum albumin by photoaffinity labeling.
    Muramoto K; Ramachandran J
    Biochemistry; 1981 Jun; 20(12):3380-5. PubMed ID: 6266454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoreactive, active derivatives of trypsin and chymotrypsin inhibitors from soybeans and chickpeas.
    Birk Y; Smirnoff P; Ramachandran J
    Adv Exp Med Biol; 1986; 199():469-81. PubMed ID: 3799289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoaffinity labeling of corticotropin receptors.
    Ramachandran J; Muramoto K; Kenez-Keri M; Keri G; Buckley DI
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):3967-70. PubMed ID: 6254005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of photoreactive derivatives of trypsin-chymotrypsin inhibitors from soybeans and chick peas by selective modification of lysine residues.
    Smirnoff P; Ramachandran J; Birk Y
    Int J Pept Protein Res; 1985 Sep; 26(3):274-8. PubMed ID: 4055235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of a heterobifunctional photoaffinity reagent for modification of tryptophan residues and its application to the preparation of a photoreactive glucagon derivative.
    Demoliou CD; Epand RM
    Biochemistry; 1980 Sep; 19(20):4539-46. PubMed ID: 7426613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic tools for adrenocorticotropin receptor identification.
    Finn FM; Stehle CJ; Hofmann K
    Biochemistry; 1985 Apr; 24(8):1960-5. PubMed ID: 2990545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and properties of tritiated human [Tyr18, Trp27]-beta-endorphin.
    Hammonds RG; Li CH
    Int J Pept Protein Res; 1985 Feb; 25(2):149-54. PubMed ID: 2985518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the enzymic activity of chicken pepsin by the covalent modification of its single -- SH group.
    Shechter Y; Rubinstein M; Becker R; Bohak Z
    Eur J Biochem; 1975 Oct; 58(1):123-31. PubMed ID: 1102299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanylation of sulfhydryl groups by 2-nitro-5-thiocyanobenzoic acid. High-yield modification and cleavage of peptides at cysteine residues.
    Degani Y; Patchornik A
    Biochemistry; 1974 Jan; 13(1):1-11. PubMed ID: 4808702
    [No Abstract]   [Full Text] [Related]  

  • 14. Photoaffinity labeling of pituitary GnRH receptors: significance of the position of photolabel on the ligand.
    Nikolics K; Szönyi E; Ramachandran J
    Biochemistry; 1988 Mar; 27(5):1425-32. PubMed ID: 2835092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible introduction of thiol compounds into proteins by use of activated mixed disulfides.
    Faulstich H; Heintz D
    Methods Enzymol; 1995; 251():357-66. PubMed ID: 7651217
    [No Abstract]   [Full Text] [Related]  

  • 16. New mixed disulfides of L-cysteine derivatives and of glutathione with diethyldithiocarbamic acid and 2-mercaptoethanesulfonic acid.
    Rajca A; Bertram B; Eisenbarth J; Wiessler M
    Arzneimittelforschung; 1990 Mar; 40(3):282-6. PubMed ID: 2161235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative products in the reaction of 2-nitro-5-thiocyanatobenzoic acid with thiol groups.
    Price NC
    Biochem J; 1976 Oct; 159(1):177-80. PubMed ID: 999637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a corticotropin analog that retains full biological activity after iodination.
    Buckley DI; Yamashiro D; Ramachandran J
    Endocrinology; 1981 Jul; 109(1):5-9. PubMed ID: 6263593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of aryl azides by thiols: implications for the use of photoaffinity reagents.
    Staros JV; Bayley H; Standring DN; Knowles JR
    Biochem Biophys Res Commun; 1978 Feb; 80(3):568-72. PubMed ID: 24446
    [No Abstract]   [Full Text] [Related]  

  • 20. Molecular basis of superreactivity of cysteine residues 31 and 32 of seminal ribonuclease.
    Parente A; Merrifield B; Geraci G; D'Alessio G
    Biochemistry; 1985 Feb; 24(5):1098-104. PubMed ID: 4096891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.