BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 6266467)

  • 1. Haptenic activity of galactosyl ceramide and its topographical distribution on liposomal membranes. I. Effect of cholesterol incorporation.
    Suzuki T; Utsumi H; Inoue K; Nojima S
    Biochim Biophys Acta; 1981 Jun; 644(2):183-91. PubMed ID: 6266467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptenic activity of galactosyl ceramide and its topographical distribution on liposomal membranes. Effects of temperature and phospholipid composition.
    Utsumi H; Suzuki T; Inoue K; Nojima S
    J Biochem; 1984 Jul; 96(1):97-105. PubMed ID: 6092327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunogenicity of liposomal model membranes sensitized with spin-labeled haptens and topographical distribution of haptens on the membranes.
    Hashimoto K; Inoue K; Nojima S; Tadakuma T; Yasuda T
    J Biochem; 1982 Dec; 92(6):1813-21. PubMed ID: 6761338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic properties of the haptenic site of lipid haptens in phosphatidylcholine membranes. Their relation to the phase transition of the host lattice.
    Takeshita K; Utsumi H; Hamada A
    Biophys J; 1987 Aug; 52(2):187-97. PubMed ID: 2822160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol.
    Veiga MP; Arrondo JL; Goñi FM; Alonso A; Marsh D
    Biochemistry; 2001 Feb; 40(8):2614-22. PubMed ID: 11327885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of concanavalin A with spin-labeled glycolipid incorporated into liposomes.
    Suzuki T; Inoue K; Nojima S; Wiegandt H
    J Biochem; 1983 Aug; 94(2):373-7. PubMed ID: 6313633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ESR study on synthetic glyceroglycolipid liposomal membranes.
    Naito M; Utsumi H; Umeda M; Kudo I; Takeshita K; Hamada A; Nojima S; Inoue K
    Biochim Biophys Acta; 1989 Oct; 985(2):147-52. PubMed ID: 2553114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune reactions of liposomes containing cardiolipin and their relation to membrane fluidity.
    Takashi T; Inoue K; Nojima S
    J Biochem; 1980 Mar; 87(3):679-85. PubMed ID: 7190143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micellar formation of spin-labeled fatty acyl derivatives of lipophilic muramyl dipeptides and their incorporation into liposomal membranes.
    Manabe H; Utsumi H; Kusama T; Hamada A
    Chem Phys Lipids; 1986 May; 40(1):1-14. PubMed ID: 3015438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibodies bound to lipid haptens in model membranes diffuse as rapidly as the lipids themselves.
    Smith LM; Parce JW; Smith BA; McConnell HM
    Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4177-9. PubMed ID: 291959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-controlled depletion of complement activity by spin-label-specific IgM.
    Humphries GM; McConnell HM
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3537-41. PubMed ID: 198789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and dynamical aspects of membrane immunochemistry using model membranes.
    Brûlet P; McConnell HM
    Biochemistry; 1977 Mar; 16(6):1209-17. PubMed ID: 191064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physical state of membrane lipids modulates the activation of the first component of complement.
    Esser AF; Bartholomew RM; Parce JW; McConnell HM
    J Biol Chem; 1979 Mar; 254(6):1768-70. PubMed ID: 422552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting surface expression of glycolipids: influence of lipid environment and ceramide composition on antibody recognition of cerebroside sulfate in liposomes.
    Crook SJ; Boggs JM; Vistnes AI; Koshy KM
    Biochemistry; 1986 Nov; 25(23):7488-94. PubMed ID: 3801428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed membranes of sphingolipids and glycerolipids as studied by spin-label ESR spectroscopy. A search for domain formation.
    Veiga MP; Goñi FM; Alonso A; Marsh D
    Biochemistry; 2000 Aug; 39(32):9876-83. PubMed ID: 10933806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure of galactosylceramide to galactose oxidase in liposomes: dependence on lipid environment and ceramide composition.
    Stewart RJ; Boggs JM
    Biochemistry; 1993 Jun; 32(21):5605-14. PubMed ID: 8504080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosphingolipid headgroup orientation in fluid phospholipid/cholesterol membranes: similarity for a range of glycolipid fatty acids.
    Morrow MR; Singh DM; Grant CW
    Biophys J; 1995 Sep; 69(3):955-64. PubMed ID: 8519995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EPR investigation of clomipramine interaction with phosphatidylcholine membranes in presence and absence of cholesterol.
    Yonar D; Paktaş DD; Horasan N; Strancar J; Sentjurc M; Sünnetçioğlu MM
    J Liposome Res; 2011 Sep; 21(3):194-202. PubMed ID: 20624028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Effects of temperature, cholesterol and magnetic field.
    Shimoyama Y; Eriksson LE; Ehrenberg A
    Biochim Biophys Acta; 1978 Apr; 508(2):213-35. PubMed ID: 205243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of fatty acyl chain length of phosphatidylcholine on their transfer from liposomes to erythrocytes and transverse diffusion in the membranes inferred by TEMPO-phosphatidylcholine spin probes.
    Tamura A; Yoshikawa K; Fujii T; Ohki K; Nozawa Y; Sumida Y
    Biochim Biophys Acta; 1986 Feb; 855(2):250-6. PubMed ID: 3004580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.