These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6266497)

  • 1. Glycogen synthase activity in Chinese hamster ovary cells. Studies with wild-type and mutant cells defective in cyclic AMP-dependent protein kinase.
    LeCam A; Gottesman MM; Pastan I
    Biochim Biophys Acta; 1981 Jun; 675(1):94-100. PubMed ID: 6266497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a cyclic AMP-resistant Chinese hamster ovary cell mutant containing both wild-type and mutant species of type I regulatory subunit of cyclic AMP-dependent protein kinase.
    Singh TJ; Hochman J; Verna R; Chapman M; Abraham I; Pastan IH; Gottesman MM
    J Biol Chem; 1985 Nov; 260(26):13927-33. PubMed ID: 2997187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycogen synthase kinases. Distribution in mammalian tissues of forms that are independent of cyclic AMP.
    Schlender KK; Reimann EM
    J Biol Chem; 1977 Apr; 252(7):2384-9. PubMed ID: 191459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The phosphorylation of rabbit skeletal muscle glycogen synthase by glycogen synthase kinase-2 and adenosine-3':5'-monophosphate-dependent protein kinase.
    Nimmo HG; Proud CG; Cohen P
    Eur J Biochem; 1976 Sep; 68(1):31-44. PubMed ID: 183955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total conversion of glycogen synthase from the I- to the D-form by a cyclic AMP-independent protein kinase from rabbit skeletal muscle.
    Itarte E; Robinson JC; Huang KP
    J Biol Chem; 1977 Feb; 252(4):1231-4. PubMed ID: 190226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cyclic AMP-resistant Chinese hamster ovary cell mutants lacking type I protein kinase.
    Singh TJ; Roth C; Gottesman MM; Pastan IH
    J Biol Chem; 1981 Jan; 256(2):926-32. PubMed ID: 6256373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition by glucose 6-phosphate of cyclic AMP-dependent protein kinase phosphorylation of glycogen synthase.
    Villar-Palasi C
    Biochim Biophys Acta; 1994 Jul; 1207(1):88-92. PubMed ID: 8043614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic AMP-dependent phosphorylation in intact cells and in cell-free extracts from Chinese hamster ovary cells. Studies with wild type and cyclic AMP-resistant mutants.
    LeCam A; Nicolas JC; Singh TJ; Cabral F; Pastan I; Gottesman MM
    J Biol Chem; 1981 Jan; 256(2):933-41. PubMed ID: 6256374
    [No Abstract]   [Full Text] [Related]  

  • 9. Dephosphorylation and activation of exogenous glycogen synthase by adipose-tissue phosphatase.
    Brown JH; Eichner RD; Thompson B; Mayer S
    Biochem J; 1980 Apr; 188(1):221-8. PubMed ID: 6250540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of cyclic AMP effect on nutrient transport in Chinese hamster ovary cells. A genetic approach.
    LeCam A; Gottesman MM; Pastan I
    J Biol Chem; 1980 Sep; 255(17):8103-8. PubMed ID: 6251043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of a glycogen synthase I kinase that is independent of adenosine 3':5'-monophosphate.
    Schlender KK; Reimann EM
    Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2197-201. PubMed ID: 166380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormonal regulation of glycogen synthase: insulin decreases protein kinase sensitivity to cyclic AMP.
    Walkenbach RJ; Hazen R; Larner J
    Biochim Biophys Acta; 1980 May; 629(3):421-30. PubMed ID: 6251903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic evidence that a phorbol ester tumor promoter stimulates ornithine decarboxylase activity by a pathway that is independent of cyclic AMP-dependent protein kinases in CHO cells.
    Lichti U; Gottesman MM
    J Cell Physiol; 1982 Dec; 113(3):433-9. PubMed ID: 6294128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of calcium-activated, cyclic nucleotide-independent protein kinase and adenosine 3':5'-monophosphate-dependent protein kinase as regards the ability to stimulate glycogen breakdown in vitro.
    Kishimoto A; Mori T; Takai Y; Nishizuka Y
    J Biochem; 1978 Jul; 84(1):47-53. PubMed ID: 211121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of two cyclic AMP-independent casein/glycogen synthase kinases from rat liver cytosol.
    Itarte E; Mor MA; Salavert A; Pena JM; Bertomeu JF; Guinovart JJ
    Biochim Biophys Acta; 1981 Apr; 658(2):334-47. PubMed ID: 6264960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of glucose and the hexosamine biosynthesis pathway on glycogen synthase kinase-3 and other protein kinases that regulate glycogen synthase activity.
    Singh LP; Crook ED
    J Investig Med; 2000 Jul; 48(4):251-8. PubMed ID: 10916283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of transglutaminase activity in Chinese hamster ovary cells.
    Milhaud PG; Davies PJ; Pastan I; Gottesman MM
    Biochim Biophys Acta; 1980 Jul; 630(4):476-84. PubMed ID: 6104988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of cyclic AMP-independent glycogen synthase kinase from rat skeletal muscle.
    Schlender KK; Beebe SJ; Willey JC; Lutz SA; Reimann EM
    Biochim Biophys Acta; 1980 Oct; 615(2):324-40. PubMed ID: 6251890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation.
    Hardy TA; Roach PJ
    J Biol Chem; 1993 Nov; 268(32):23799-805. PubMed ID: 8226915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and properties of cyclic AMP-independent glycogen synthase kinase 1 from rabbit skeletal muscle.
    Itarte E; Huang KP
    J Biol Chem; 1979 May; 254(10):4052-7. PubMed ID: 220231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.