These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 6266586)
1. Control of the variability of the afferent discharge rate in frog muscle spindle by potassium blockers. Ito F; Komatsu Y; Kaneko N; Katsuta N Brain Res; 1981 Jul; 216(1):199-202. PubMed ID: 6266586 [TBL] [Abstract][Full Text] [Related]
2. [Role of the Ca and K currents on the afferent synaptic transmission of the isolated labyrinth of the frog]. Rossi ML; Martini M Boll Soc Ital Biol Sper; 1987 Oct; 63(10):931-7. PubMed ID: 2451924 [No Abstract] [Full Text] [Related]
3. GK(Ca)-dependent cyclic potential changes in the sensory nerve terminal of frog muscle spindle. Ito F; Komatsu Y; Fujitsuka N Brain Res; 1982 Dec; 252(1):39-50. PubMed ID: 6293658 [TBL] [Abstract][Full Text] [Related]
4. The effect of barium and some channel blockers on sensory discharge of the frog labyrinth posterior canal recorded at rest and during rotation. Rossi ML; Martini M Brain Res; 1988 Jun; 452(1-2):312-22. PubMed ID: 2456827 [TBL] [Abstract][Full Text] [Related]
5. Potassium channels moderate ectopic excitability of nerve-end neuromas in rats. Devor M Neurosci Lett; 1983 Sep; 40(2):181-6. PubMed ID: 6314210 [TBL] [Abstract][Full Text] [Related]
6. Effects of anions on calcium component in sensory nerve terminal of frog muscle spindles. Ito F; Komatsu Y; Fujitsuka N Brain Res; 1982 Dec; 252(1):197-200. PubMed ID: 6293656 [TBL] [Abstract][Full Text] [Related]
7. Effects of calcium blockers on the discharge pattern of frog muscle spindle. Ito F; Komatsu Y; Katsuta N Brain Res; 1981 Aug; 218(1-2):388-92. PubMed ID: 6456035 [TBL] [Abstract][Full Text] [Related]
8. Reversal of the static component of spindle potential by imposed depolarizing current in the frog muscle spindle. Ito F; Fujitsuka N; Fan XL Brain Res; 1985 Feb; 326(1):107-16. PubMed ID: 2578853 [TBL] [Abstract][Full Text] [Related]
9. Opioids excite rather than inhibit sensory neurons after chronic opioid exposure of spinal cord-ganglion cultures. Crain SM; Shen KF; Chalazonitis A Brain Res; 1988 Jul; 455(1):99-109. PubMed ID: 2458169 [TBL] [Abstract][Full Text] [Related]
10. Effects of Ba ions on frog's isolated muscle spindle. Taglietti V; Pietra P; Zucca G J Physiol (Paris); 1976 Jan; 70(6):795-812. PubMed ID: 131191 [TBL] [Abstract][Full Text] [Related]
11. 4-Aminopyridine reduces chorda tympani nerve taste responses to potassium and alkali salts in rat. Kim M; Mistretta CM Brain Res; 1993 May; 612(1-2):96-103. PubMed ID: 8330218 [TBL] [Abstract][Full Text] [Related]
12. Delayed rectifier K+ current in embryonic chick heart ventricle. Clapham DE; Logothetis DE Am J Physiol; 1988 Jan; 254(1 Pt 2):H192-7. PubMed ID: 2827524 [TBL] [Abstract][Full Text] [Related]
13. BaCl2- and 4-aminopyridine-evoked phasic contractions in the rat vas deferens. Huang Y Br J Pharmacol; 1995 Jul; 115(5):845-51. PubMed ID: 8548186 [TBL] [Abstract][Full Text] [Related]
14. Effects of ruthenium ions on the sensory terminal discharges of the frog muscle spindle. Ito F; Fujitsuka N; Komatsu Y Brain Res; 1983 Oct; 276(2):277-88. PubMed ID: 6194862 [TBL] [Abstract][Full Text] [Related]
15. Electrical threshold of the sensory nerve terminal of the frog muscle spindle: a role of spindle potential for generating afferent impulses. Ito F; Fujitsuka N Neurosci Lett; 1983 Jun; 37(3):233-7. PubMed ID: 6310449 [TBL] [Abstract][Full Text] [Related]
16. A calcium-activated potassium current in motor nerve terminals of the mouse. Mallart A J Physiol; 1985 Nov; 368():577-91. PubMed ID: 2416920 [TBL] [Abstract][Full Text] [Related]
18. The spindle potential in the frog muscle spindle does not require external Na+. Ito F; Fujitsuka N; Kim N Brain Res; 1983 Oct; 277(2):352-4. PubMed ID: 6315147 [TBL] [Abstract][Full Text] [Related]
19. Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones. Barrett EF; Barret JN J Physiol; 1976 Mar; 255(3):737-74. PubMed ID: 1083431 [TBL] [Abstract][Full Text] [Related]
20. Biophysical and pharmacological properties of large conductance Ca(2+)-activated K+ channels in N1E-115 cells. Diserbo M; Antonny B; Verdetti J Biochem Biophys Res Commun; 1994 Nov; 205(1):596-602. PubMed ID: 7999085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]