These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 6266742)

  • 1. The role of controlling elements in the instability of flower color in Antirrhinum majus and Impatiens balsamina.
    Sastry GR; Aslam KM; Jeffries V
    Cold Spring Harb Symp Quant Biol; 1981; 45 Pt 2():477-86. PubMed ID: 6266742
    [No Abstract]   [Full Text] [Related]  

  • 2. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus.
    Coen ES; Carpenter R; Martin C
    Cell; 1986 Oct; 47(2):285-96. PubMed ID: 3021338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposon-induced inversion in Antirrhinum modifies nivea gene expression to give a novel flower color pattern under the control of cycloidearadialis.
    Lister C; Jackson D; Martin C
    Plant Cell; 1993 Nov; 5(11):1541-53. PubMed ID: 8312739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A common gene regulates pigmentation pattern in diverse plant species.
    Goodrich J; Carpenter R; Coen ES
    Cell; 1992 Mar; 68(5):955-64. PubMed ID: 1547495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic interactions underlying flower color patterns in Antirrhinum majus.
    Almeida J; Carpenter R; Robbins TP; Martin C; Coen ES
    Genes Dev; 1989 Nov; 3(11):1758-67. PubMed ID: 2558047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chemistry of flower pigmentation in Antirrhinum majus. II. Glycosides of PPmmYY, PPMMYY, ppmmYY and ppMMYY color genotypes.
    JORGENSEN EC; GEISSMAN TA
    Arch Biochem Biophys; 1955 Jan; 54(1):72-82. PubMed ID: 13229358
    [No Abstract]   [Full Text] [Related]  

  • 7. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum.
    Schwinn K; Venail J; Shang Y; Mackay S; Alm V; Butelli E; Oyama R; Bailey P; Davies K; Martin C
    Plant Cell; 2006 Apr; 18(4):831-51. PubMed ID: 16531495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus.
    Carpenter R; Coen ES
    Genes Dev; 1990 Sep; 4(9):1483-93. PubMed ID: 1979295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chemistry of flower pigmentation in Antirrhinum majus; color genotypes. I. The flavonoid components of the homozygous P, M, Y color types.
    GEISSMAN TA; JORGENSEN EC; JOHNSON BL
    Arch Biochem Biophys; 1954 Apr; 49(2):368-88. PubMed ID: 13159284
    [No Abstract]   [Full Text] [Related]  

  • 10. [Genes for flower coloration].
    Hoshino A; Morita Y; Iida S
    Tanpakushitsu Kakusan Koso; 2002 Mar; 47(3):210-6. PubMed ID: 11889797
    [No Abstract]   [Full Text] [Related]  

  • 11. Phenotypic effects of short-range and aberrant transposition in Antirrhinum majus.
    Hudson AD; Carpenter R; Coen ES
    Plant Mol Biol; 1990 May; 14(5):835-44. PubMed ID: 1966387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transposable elements in Antirrhinum majus and Zea mays.
    Saedler H; Bonas U; Gierl A; Harrison BJ; Klösgen RB; Krebbers E; Nevers P; Peterson PA; Schwarz-Sommer Z; Sommer H
    Cold Spring Harb Symp Quant Biol; 1984; 49():355-61. PubMed ID: 6099247
    [No Abstract]   [Full Text] [Related]  

  • 13. Pigmentation mutants produced by transposon mutagenesis in Antirrhinum majus.
    Luo D; Coen ES; Doyle S; Carpenter R
    Plant J; 1991 Jul; 1(1):59-69. PubMed ID: 1668965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories.
    Iida S; Morita Y; Choi JD; Park KI; Hoshino A
    Adv Biophys; 2004; 38():141-59. PubMed ID: 15493332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The homeotic Macho mutant of Antirrhinum majus reverts to wild-type or mutates to the homeotic plena phenotype.
    Lönnig WE; Saedler H
    Mol Gen Genet; 1994 Dec; 245(5):636-43. PubMed ID: 7808415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semi-dominant allele, niv-525, acts in trans to inhibit expression of its wild-type homologue in Antirrhinum majus.
    Coen ES; Carpenter R
    EMBO J; 1988 Apr; 7(4):877-83. PubMed ID: 3402437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of floral pigmentation in Antirrhinum.
    Martin C; Coen E; Robbins T; Bartlett J; Alemaida J; Carpenter R
    Biochem Soc Trans; 1987 Feb; 15(1):14-7. PubMed ID: 3030838
    [No Abstract]   [Full Text] [Related]  

  • 18. Genome juggling by transposons: Tam3-induced rearrangements in Antirrhinum majus.
    Martin C; Lister C
    Dev Genet; 1989; 10(6):438-51. PubMed ID: 2557989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize.
    Hehl R; Nacken WK; Krause A; Saedler H; Sommer H
    Plant Mol Biol; 1991 Feb; 16(2):369-71. PubMed ID: 1654157
    [No Abstract]   [Full Text] [Related]  

  • 20. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging.
    Martin C; Carpenter R; Sommer H; Saedler H; Coen ES
    EMBO J; 1985 Jul; 4(7):1625-30. PubMed ID: 16453618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.