These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 6267008)
1. Defective enzyme II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium. Postma PW J Bacteriol; 1981 Aug; 147(2):382-9. PubMed ID: 6267008 [TBL] [Abstract][Full Text] [Related]
2. Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. Stock JB; Waygood EB; Meadow ND; Postma PW; Roseman S J Biol Chem; 1982 Dec; 257(23):14543-52. PubMed ID: 6292227 [TBL] [Abstract][Full Text] [Related]
3. Sugar transport by the bacterial phosphotransferase system. Preparation and characterization of membrane vesicles from mutant and wild type Salmonella typhimurium. Beneski DA; Misko TP; Roseman S J Biol Chem; 1982 Dec; 257(23):14565-75. PubMed ID: 6754736 [TBL] [Abstract][Full Text] [Related]
4. Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium. Scholte BJ; Postma PW Eur J Biochem; 1981; 114(1):51-8. PubMed ID: 7011803 [TBL] [Abstract][Full Text] [Related]
5. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Simoni RD; Roseman S; Saier MH J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368 [TBL] [Abstract][Full Text] [Related]
6. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific phosphocarrier protein (IIIGlc) from Salmonella typhimurium. Meadow ND; Roseman S J Biol Chem; 1982 Dec; 257(23):14526-37. PubMed ID: 6754734 [TBL] [Abstract][Full Text] [Related]
7. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation. Postma PW; Stock JB J Bacteriol; 1980 Feb; 141(2):476-84. PubMed ID: 6988384 [TBL] [Abstract][Full Text] [Related]
9. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752 [TBL] [Abstract][Full Text] [Related]
10. Kinetic analyses of the sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system. Rephaeli AW; Saier MH J Biol Chem; 1978 Nov; 253(21):7595-7. PubMed ID: 359550 [TBL] [Abstract][Full Text] [Related]
11. II-BGlc, a glucose receptor of the bacterial phosphotransferase system: molecular cloning of ptsG and purification of the receptor from an overproducing strain of Escherichia coli. Bouma CL; Meadow ND; Stover EW; Roseman S Proc Natl Acad Sci U S A; 1987 Feb; 84(4):930-4. PubMed ID: 3029764 [TBL] [Abstract][Full Text] [Related]
12. Transport of trehalose in Salmonella typhimurium. Postma PW; Keizer HG; Koolwijk P J Bacteriol; 1986 Dec; 168(3):1107-11. PubMed ID: 3023298 [TBL] [Abstract][Full Text] [Related]
13. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium. Saier MH; Novotny MJ; Comeau-Fuhrman D; Osumi T; Desai JD J Bacteriol; 1983 Sep; 155(3):1351-7. PubMed ID: 6350268 [TBL] [Abstract][Full Text] [Related]
14. Isolation of IIIGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system of Salmonella typhimurium. Scholte BJ; Schuitema AR; Postma PW J Bacteriol; 1981 Oct; 148(1):257-64. PubMed ID: 7026533 [TBL] [Abstract][Full Text] [Related]
15. The phosphoenolpyruvate:glucose phosphotransferase system of Salmonella typhimurium. The phosphorylated form of IIIGlc. Nelson SO; Schuitema AR; Postma PW Eur J Biochem; 1986 Jan; 154(2):337-41. PubMed ID: 3510871 [TBL] [Abstract][Full Text] [Related]
16. Interaction between IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and glycerol kinase of Salmonella typhimurium. Postma PW; Epstein W; Schuitema AR; Nelson SO J Bacteriol; 1984 Apr; 158(1):351-3. PubMed ID: 6325396 [TBL] [Abstract][Full Text] [Related]
17. Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium. Feucht BU; Saier MH J Bacteriol; 1980 Feb; 141(2):603-10. PubMed ID: 6245052 [TBL] [Abstract][Full Text] [Related]
18. Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium. Weigel N; Kukuruzinska MA; Nakazawa A; Waygood EB; Roseman S J Biol Chem; 1982 Dec; 257(23):14477-91. PubMed ID: 6754730 [TBL] [Abstract][Full Text] [Related]
19. Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of alpha-methyl glucoside. Vadeboncoeur C; Trahan L Can J Microbiol; 1982 Feb; 28(2):190-9. PubMed ID: 7066764 [TBL] [Abstract][Full Text] [Related]
20. Adaptation of Salmonella typhimurium mutants containing uncoupled enzyme IIGlc to glucose-limited conditions. Ruijter GJ; Postma PW; van Dam K J Bacteriol; 1990 Sep; 172(9):4783-9. PubMed ID: 2203730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]