BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 6267032)

  • 1. Characterization of the potentiometric behavior of soluble cytochrome oxidase by magnetic circular dichroism. Evidence in support of heme-heme interaction.
    Carithers RP; Palmer G
    J Biol Chem; 1981 Aug; 256(15):7967-76. PubMed ID: 6267032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electronic state of heme in cytochrome oxidase II. Oxidation-reduction potential interactions and heme iron spin state behavior observed in reductive titrations.
    Babcock GT; Vickery LE; Palmer G
    J Biol Chem; 1978 Apr; 253(7):2400-11. PubMed ID: 204649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models of the two heme centers in cytochrome oxidase. The optical properties of cytochrome a and a3.
    Carter K; Palmer G
    J Biol Chem; 1982 Nov; 257(22):13507-14. PubMed ID: 6292192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further characterization of the potentiometric behavior of cytochrome oxidase. Cytochrome alpha stays low spin during oxidation and reduction.
    Kojima N; Palmer G
    J Biol Chem; 1983 Dec; 258(24):14908-13. PubMed ID: 6317678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding and oxidation of mutant cytochromes c by cytochrome-c oxidase.
    Michel B; Mauk AG; Bosshard HR
    FEBS Lett; 1989 Jan; 243(2):149-52. PubMed ID: 2537228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and biophysical studies on cytochrome c oxidase. XVIII. Potentiometric titrations of cytochrome c oxidase followed by circular dichroism.
    Tiesjema RH; Hardy GP; van Gelder BF
    Biochim Biophys Acta; 1974 Jul; 357(1):24-33. PubMed ID: 4369809
    [No Abstract]   [Full Text] [Related]  

  • 7. Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model.
    Orii Y; Miki T
    J Biol Chem; 1997 Jul; 272(28):17594-604. PubMed ID: 9211907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal site cooperativity within cytochrome oxidase.
    Goodman G
    J Biol Chem; 1984 Dec; 259(24):15094-9. PubMed ID: 6096358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic analysis of the cytochrome c oxidase-cytochrome c complex: circular dichroism and magnetic circular dichroism measurements reveal change of cytochrome c heme geometry imposed by complex formation.
    Weber C; Michel B; Bosshard HR
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6687-91. PubMed ID: 2821542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of heme A and heme B in a designed four-helix bundle: implications for a cytochrome c oxidase maquette.
    Gibney BR; Isogai Y; Rabanal F; Reddy KS; Grosset AM; Moser CC; Dutton PL
    Biochemistry; 2000 Sep; 39(36):11041-9. PubMed ID: 10998241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies on cytochrome c oxidase by combined epr and reflectance spectroscopy after rapid freezing.
    Beinert H; Hansen RE; Hartzell CR
    Biochim Biophys Acta; 1976 Feb; 423(2):339-55. PubMed ID: 2321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heme-heme interaction in cytochrome c oxidase: the cooperativity of the hemes of cytochrome c oxidase as evidenced in the reaction with CO.
    Leigh JS; Wilson DF; Owen CS; King TE
    Arch Biochem Biophys; 1974 Feb; 160(2):476-86. PubMed ID: 4364769
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of high pH on the spectral and catalytic properties of beef heart cytochrome oxidase.
    Baker GM; Palmer G
    Biochemistry; 1987 Jun; 26(11):3038-44. PubMed ID: 3038174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Redox-dependent protonation of cytochrome oxidase hemes in submitochondrial particles of the bovine heart].
    Artsatbanov VIu; Grigor'ev VA; Konstantinov AA
    Biokhimiia; 1983 Jan; 48(1):46-53. PubMed ID: 6299407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron spin relaxation of CuA and cytochrome a in cytochrome c oxidase. Comparison to heme, copper, and sulfur radical complexes.
    Brudvig GW; Blair DF; Chan SI
    J Biol Chem; 1984 Sep; 259(17):11001-9. PubMed ID: 6088526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoreactivation of the cytochrome oxidase complex with cyanide: the reaction of heme a3 photoreduction.
    Konev SV; Beljanovich LM; Rudenok AN
    Membr Cell Biol; 1998; 12(5):743-54. PubMed ID: 10379650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials. Characterization of site-site interactions.
    Blair DF; Ellis WR; Wang H; Gray HB; Chan SI
    J Biol Chem; 1986 Sep; 261(25):11524-37. PubMed ID: 3017934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and biophysical studies on cytochrome c oxidase. X. Spectral and potentiometric properties of the hemes and coppers.
    Tiesjema RH; Muijsers AO; van Gelder BF
    Biochim Biophys Acta; 1973 Apr; 305(1):19-28. PubMed ID: 4352553
    [No Abstract]   [Full Text] [Related]  

  • 19. EPR studies of cytochrome aa3 from Sulfolobus acidocaldarius. Evidence for a binuclear center in archaebacterial terminal oxidase.
    Anemüller S; Bill E; Schäfer G; Trautwein AX; Teixeira M
    Eur J Biochem; 1992 Nov; 210(1):133-8. PubMed ID: 1332857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cytochrome c oxidase-cytochrome c complex: spectroscopic analysis of conformational changes in the protein-protein interaction domain.
    Michel B; Proudfoot AE; Wallace CJ; Bosshard HR
    Biochemistry; 1989 Jan; 28(2):456-62. PubMed ID: 2540799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.