These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6267059)

  • 41. Lysosomal enzyme leakage during the hypoxanthine/xanthine oxidase reaction.
    Olsson GM; Svensson I; Zdolsek JM; Brunk UT
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1989; 56(6):385-91. PubMed ID: 2567086
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rate enhancement of the internal electron transfer in cytochrome c oxidase by the formation of a peroxide complex; its implication on the reaction mechanism of cytochrome c oxidase.
    Gorren AC; Dekker H; Vlegels L; Wever R
    Biochim Biophys Acta; 1988 Mar; 932(3):277-86. PubMed ID: 2831974
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetics of reduction by free flavin semiquinones of the components of the cytochrome c-cytochrome c peroxidase complex and intracomplex electron transfer.
    Hazzard JT; Poulos TL; Tollin G
    Biochemistry; 1987 May; 26(10):2836-48. PubMed ID: 3038167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A kinetic study on iron stimulation of the xanthine oxidase dependent oxidation of ascorbate.
    Løvstad RA
    Biometals; 2003 Sep; 16(3):435-9. PubMed ID: 12680706
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of arsenite-complexed xanthine oxidase at room temperature. Spectral properties and pH-dependent redox behavior of the molybdenum-arsenite center.
    Stewart RC; Hille R; Massey V
    J Biol Chem; 1984 Dec; 259(23):14426-36. PubMed ID: 6094556
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparative study of EPR spin trapping and cytochrome c reduction techniques for the measurement of superoxide anions.
    Sanders SP; Harrison SJ; Kuppusamy P; Sylvester JT; Zweier JL
    Free Radic Biol Med; 1994 Jun; 16(6):753-61. PubMed ID: 8070678
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of milk xanthine oxidase with folic acid. Inhibition of milk xanthine oxidase by folic acid and separation of the enzyme into two fractions on Sepharose 4B/folate gel.
    Nishino T; Tsushima K
    J Biol Chem; 1986 Aug; 261(24):11242-6. PubMed ID: 3015962
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flavin-linked Erv-family sulfhydryl oxidases release superoxide anion during catalytic turnover.
    Daithankar VN; Wang W; Trujillo JR; Thorpe C
    Biochemistry; 2012 Jan; 51(1):265-72. PubMed ID: 22148553
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inactivation of glutathione peroxidase by superoxide radical.
    Blum J; Fridovich I
    Arch Biochem Biophys; 1985 Aug; 240(2):500-8. PubMed ID: 2992378
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Charge transfer complexes between pteridine substrates and the active center molybdenum of xanthine oxidase.
    Davis MD; Olson JS; Palmer G
    J Biol Chem; 1982 Dec; 257(24):14730-7. PubMed ID: 6897405
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of flavonoids on xanthine oxidation as well as on cytochrome c reduction by milk xanthine oxidase.
    Iio M; Ono Y; Kai S; Fukumoto M
    J Nutr Sci Vitaminol (Tokyo); 1986 Dec; 32(6):635-42. PubMed ID: 3035152
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Peroxynitrite formation from the simultaneous reduction of nitrite and oxygen by xanthine oxidase.
    Millar TM
    FEBS Lett; 2004 Mar; 562(1-3):129-33. PubMed ID: 15044013
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electronic probes of the mechanism of substrate oxidation by buttermilk xanthine oxidase: role of the active-site nucleophile in oxidation.
    Skibo EB; Gilchrist JH; Lee CH
    Biochemistry; 1987 Jun; 26(11):3032-7. PubMed ID: 3607009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies on the specificity toward aldehyde substrates and steady-state kinetics of xanthine oxidase.
    Morpeth FF
    Biochim Biophys Acta; 1983 May; 744(3):328-34. PubMed ID: 6687810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies.
    Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ
    Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of superoxide in xanthine oxidase-induced autooxidation of linoleic acid.
    Thomas MJ; Mehl KS; Pryor WA
    J Biol Chem; 1982 Jul; 257(14):8343-7. PubMed ID: 6282880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The reaction of superoxide with reduced glutathione.
    Winterbourn CC; Metodiewa D
    Arch Biochem Biophys; 1994 Nov; 314(2):284-90. PubMed ID: 7979367
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How relevant is the reoxidation of ferrocytochrome c by hydrogen peroxide when determining superoxide anion production?
    Turrens JF; McCord JM
    FEBS Lett; 1988 Jan; 227(1):43-6. PubMed ID: 2828112
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The interaction of bisulfite with milk xanthine oxidase.
    Fish KM; Massey V; Sands RH; Dunham WR
    J Biol Chem; 1990 Nov; 265(32):19665-71. PubMed ID: 2174049
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury.
    Nishino T
    J Biochem; 1994 Jul; 116(1):1-6. PubMed ID: 7798166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.