These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 6267089)
1. Separation of cytochromes c by reversed-phase high-performance liquid chromatography. Terabe S; Nishi H; Ando T J Chromatogr; 1981 Aug; 212(3):295-304. PubMed ID: 6267089 [TBL] [Abstract][Full Text] [Related]
2. Probing stability and dynamics of proteins by protease digestion. II: Identification of the initial chymotryptic cleavage sites of homologous cytochromes c. Miki Y; Endo S; Giga-Hama Y; Tanji M; Wada A J Biomol Struct Dyn; 1988 Aug; 6(1):1-21. PubMed ID: 2856033 [TBL] [Abstract][Full Text] [Related]
3. Alternative mobile phases for enhanced chromatographic selectivity and increased sensitivity in peptide separations. Young PM; Wheat TE Biotechniques; 1991 Feb; 10(2):228-35. PubMed ID: 1647805 [TBL] [Abstract][Full Text] [Related]
4. Probing local thermal stabilities of bovine, horse, and tuna ferricytochromes c at pH 7. Filosa A; English AM J Biol Inorg Chem; 2000 Aug; 5(4):448-54. PubMed ID: 10968615 [TBL] [Abstract][Full Text] [Related]
5. Specificity of rabbit antisera for peptide 81-104 of horse cytochrome c is dominated by C-terminal residues. Wang KM; Reichlin M Mol Immunol; 1982 May; 19(5):729-36. PubMed ID: 6287244 [TBL] [Abstract][Full Text] [Related]
6. Optimization of high-performance liquid chromatographic peptide separations with alternative mobile and stationary phases. Young PM; Wheat TE J Chromatogr; 1990 Jul; 512():273-81. PubMed ID: 2172265 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the structures of various eukaryotic ferricytochromes c and ferrocytochromes and their antigenic differences. Moore GR; Williams RJ Eur J Biochem; 1980 Feb; 103(3):543-50. PubMed ID: 6153614 [TBL] [Abstract][Full Text] [Related]
8. Cytochrome c: ion binding and redox properties. Studies on ferri and ferro forms of horse, bovine, and tuna cytochrome c. Gopal D; Wilson GS; Earl RA; Cusanovich MA J Biol Chem; 1988 Aug; 263(24):11652-6. PubMed ID: 2841331 [TBL] [Abstract][Full Text] [Related]
9. Ion-exchange high-performance liquid chromatographic separation of protein variants and isoforms on MCI GEL ProtEx stationary phases. Adachi T; Takayanagi H; Sharpe AD J Chromatogr A; 1997 Feb; 763(1-2):57-63. PubMed ID: 9129315 [TBL] [Abstract][Full Text] [Related]
10. The conformation of eukaryotic cytochrome c around residues 39, 57, 59 and 74. Robinson MN; Boswell AP; Huang ZX; Eley CG; Moore GR Biochem J; 1983 Sep; 213(3):687-700. PubMed ID: 6311172 [TBL] [Abstract][Full Text] [Related]
11. Separation of peptides on a polystyrene resin column. Sasagawa T; Ericsson LH; Teller DC; Titani K; Walsh KA J Chromatogr; 1984 Apr; 307(1):29-38. PubMed ID: 6327748 [TBL] [Abstract][Full Text] [Related]
12. Beta-thiopropionyl cytochromes c modified at lysyl residues: preparation and characterization of the monosubstituted horse cytochromes c. Theodorakis JL; Armes LG; Margoliash E Biochim Biophys Acta; 1995 Sep; 1252(1):114-25. PubMed ID: 7548153 [TBL] [Abstract][Full Text] [Related]
13. [ON SPECIES SPECIFICITY OF CYTOCHROME C: COMPARISON OF THE AMINO ACID SEQUENCE OF TUNA FISH CYTOCHROME C WITH HORSE CYTOCHROME C]. KREIL G Hoppe Seylers Z Physiol Chem; 1963; 334():154-66. PubMed ID: 14136705 [No Abstract] [Full Text] [Related]
14. Equilibrium and kinetic studies of unfolding of homologous cytochromes c. McLendon G; Smith M J Biol Chem; 1978 Jun; 253(11):4004-8. PubMed ID: 206558 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of reduction by free flavin semiquinones of the components of the cytochrome c-cytochrome c peroxidase complex and intracomplex electron transfer. Hazzard JT; Poulos TL; Tollin G Biochemistry; 1987 May; 26(10):2836-48. PubMed ID: 3038167 [TBL] [Abstract][Full Text] [Related]
16. Imidazoline type stationary phase for hydrophilic interaction chromatography and reversed-phase liquid chromatography. Li Y; Feng Y; Chen T; Zhang H J Chromatogr A; 2011 Sep; 1218(35):5987-94. PubMed ID: 21543075 [TBL] [Abstract][Full Text] [Related]
17. Performance of nonrigid ion-exchange packings of small particle size in the separation of cytochrome c and derivatives by high-pressure liquid chromatography. van der Wal S; Huber JF Anal Biochem; 1980 Jul; 105(2):219-29. PubMed ID: 6257135 [No Abstract] [Full Text] [Related]
18. Proton-NMR studies of the effects of ionic strength and pH on the hyperfine-shifted resonances and phenylalanine-82 environment of three species of mitochondrial ferricytochrome c. Moench SJ; Shi TM; Satterlee JD Eur J Biochem; 1991 May; 197(3):631-41. PubMed ID: 1851480 [TBL] [Abstract][Full Text] [Related]
19. Microbore reversed-phase chromatography of proteins with conventional gradient equipment for high-performance liquid chromatography. van der Zee R; Welling GW J Chromatogr; 1985 May; 325(1):187-94. PubMed ID: 2991308 [TBL] [Abstract][Full Text] [Related]
20. Thermal denaturation of cytochromes c of horse cow, and Candida krusei in aqueous guanidine hydrochloride. Kawaguchi H; Noda H J Biochem; 1977 May; 81(5):1307-17. PubMed ID: 19430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]