These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 6267192)

  • 1. Neurochemical effects of some ergot derivatives: a basis for their antiparkinson actions.
    Markstein R
    J Neural Transm; 1981; 51(1-2):39-59. PubMed ID: 6267192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bromocriptine and lisuride stimulate the accumulation of cyclic AMP in intact slices but not in homogenates of rat neostriatum.
    Saiani L; Trabucchi M; Tonon GC; Spano PF
    Neurosci Lett; 1979 Sep; 14(1):31-6. PubMed ID: 231228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of bromocriptine on central dopaminergic receptors.
    Trabucchi M; Spano PF; Tonon GC; Frattola L
    Life Sci; 1976 Jul; 19(2):225-31. PubMed ID: 183071
    [No Abstract]   [Full Text] [Related]  

  • 4. Mesulergine and its 1,20-N,N-bidemethylated metabolite interact directly with D1- and D2-receptors.
    Markstein R
    Eur J Pharmacol; 1983 Nov; 95(1-2):101-7. PubMed ID: 6230246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interactions of bromocriptine and lergotrile with dopamine and alpha-adrenergic receptors.
    Lew JY; Hata F; Ohashi T; Goldstein M
    J Neural Transm; 1977; 41(2-3):109-21. PubMed ID: 21229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of dopamine receptors mediating inhibition of adenylate cyclase activity in rat striatum.
    Onali P; Olianas MC; Gessa GL
    Mol Pharmacol; 1985 Aug; 28(2):138-45. PubMed ID: 2410769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of normal and supersensitive dopamine receptors: effects of ergot drugs and neuropeptides.
    Fuxe K; Agnati LF; Köhler C; Kuonen D; Ogren SO; Andersson K; Hökfelt T
    J Neural Transm; 1981; 51(1-2):3-37. PubMed ID: 7264628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of bromocriptine on adenylate cyclase and phosphodiesterase activities of rat striatum.
    Pagnini G; Camanni F; Crispino A; Portaleone P
    J Pharm Pharmacol; 1978 Feb; 30(2):92-5. PubMed ID: 24111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine receptors in canine caudate nucleus.
    Maeno H
    Mol Cell Biochem; 1982 Mar; 43(2):65-80. PubMed ID: 6123940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D2 dopamine receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in rat striatum.
    Battaglia G; Norman AB; Hess EJ; Creese I
    Neurosci Lett; 1985 Aug; 59(2):177-82. PubMed ID: 2932659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adrenocorticotropin/alpha-melanocyte-stimulating hormone (ACTH/MSH)-like peptides modulate adenylate cyclase activity in rat brain slices: evidence for an ACTH/MSH receptor-coupled mechanism.
    Florijn WJ; Mulder AH; Versteeg DH; Gispen WH
    J Neurochem; 1993 Jun; 60(6):2204-11. PubMed ID: 8388034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Levodopoa but not bromocriptine induces AP-1 and creb DNA-binding activity in the dopamine-depleted striatum of the rat.
    Kashihara K; Akiyama K; Ishihara T; Shiro Y; Shohmori T
    Life Sci; 1996; 58(10):PL 159-70. PubMed ID: 8602107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of adenylate cyclase in rat striatum by pergolide: influence of GTP.
    Rosenfeld MR; Makman MH; Goldstein M
    Eur J Pharmacol; 1980 Nov; 68(1):65-8. PubMed ID: 7449835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase.
    Lee KW; Hong JH; Choi IY; Che Y; Lee JK; Yang SD; Song CW; Kang HS; Lee JH; Noh JS; Shin HS; Han PL
    J Neurosci; 2002 Sep; 22(18):7931-40. PubMed ID: 12223546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulatory action of lisuride on dopamine-sensitive adenylate cyclase in the rat striatal homogenate.
    Azuma H; Oshino N
    Jpn J Pharmacol; 1980 Oct; 30(5):629-39. PubMed ID: 7206370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopaminergic receptors linked to adenylate cyclase in human cerebromicrovascular endothelium.
    Bacic F; Uematsu S; McCarron RM; Spatz M
    J Neurochem; 1991 Nov; 57(5):1774-80. PubMed ID: 1681036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurochemical and neuropharmacological investigations with four ergot derivatives: bromocriptine, dihydroergotoxine, CF 25-397 and CM 29-712.
    Vigouret JM; Bürki HR; Jaton AL; Züger PE; Loew DM
    Pharmacology; 1978; 16 Suppl 1():156-73. PubMed ID: 565520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SDZ GLC 756, a novel octahydrobenzo[g]quinoline derivative exerts opposing effects on dopamine D1 and D2 receptors.
    Markstein R; Gull P; Rüdeberg C; Urwyler S; Jaton AL; Kalkman HO; Dixon AK; Hoyer D
    J Neural Transm (Vienna); 1996; 103(1-2):17-30. PubMed ID: 9026371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine receptor coupling to adenylyl cyclase in rat olfactory pathway: a combined pharmacological-radioautographic approach.
    Coronas V; Krantic S; Jourdan F; Moyse E
    Neuroscience; 1999 Apr; 90(1):69-78. PubMed ID: 10188934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the function of D1 and D2 dopamine receptors in striatum and nucleus accumbens of rats chronically treated with haloperidol.
    Memo M; Pizzi M; Missale C; Carruba MO; Spano PF
    Neuropharmacology; 1987 May; 26(5):477-80. PubMed ID: 2955241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.