These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 6267833)
1. Inhibitor studies of phage T4 wild-type and mutant DNA polymerases. V. A. summary of kinetic and inhibitor data. Schroeder C; Jantschak J Z Allg Mikrobiol; 1981; 21(2):141-55. PubMed ID: 6267833 [TBL] [Abstract][Full Text] [Related]
2. Inhibitor studies on phage T4 wild-type and mutant DNA polymerase. IV. The substrate analog 3'-fluorothymidine 5'-triphosphate. Schroeder C; Jantschak J Z Allg Mikrobiol; 1980; 20(10):657-62. PubMed ID: 7222744 [TBL] [Abstract][Full Text] [Related]
3. Inhibitor studies of phage T4 wild-type and mutant DNA polymerases. II. Differential inhibition by pyridoxal 5'-phosphate. Jantschak J; Schroeder C Acta Virol; 1982 Jan; 26(1-2):50-5. PubMed ID: 6124109 [TBL] [Abstract][Full Text] [Related]
4. Inhibitor studies of phage T4 wild-type and mutant DNA polymerases. III. Distamycin A, actinomycin D, adriamycin, daunomycin and ethidium. Jantschak J; Schroeder C Z Allg Mikrobiol; 1980; 20(9):563-7. PubMed ID: 7210707 [TBL] [Abstract][Full Text] [Related]
5. Error induction and correction by mutant and wild type T4 DNA polymerases. Kinetic error discrimination mechanisms. Clayton LK; Goodman MF; Branscomb EW; Galas DJ J Biol Chem; 1979 Mar; 254(6):1902-12. PubMed ID: 422561 [TBL] [Abstract][Full Text] [Related]
6. Template-prime-dependent turnover of (Sp)-dATP alpha S by T4 DNA polymerase. The stereochemistry of the associated 3' goes to 5'-exonuclease. Gupta A; DeBrosse C; Benkovic SJ J Biol Chem; 1982 Jul; 257(13):7689-92. PubMed ID: 6282851 [TBL] [Abstract][Full Text] [Related]
7. Motif A of bacteriophage T4 DNA polymerase: role in primer extension and DNA replication fidelity. Isolation of new antimutator and mutator DNA polymerases. Reha-Krantz LJ; Nonay RL J Biol Chem; 1994 Feb; 269(8):5635-43. PubMed ID: 8119900 [TBL] [Abstract][Full Text] [Related]
8. DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies. Reha-Krantz LJ; Stocki S; Nonay RL; Dimayuga E; Goodrich LD; Konigsberg WH; Spicer EK Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2417-21. PubMed ID: 2006180 [TBL] [Abstract][Full Text] [Related]
9. Locations of amino acid substitutions in bacteriophage T4 tsL56 DNA polymerase predict an N-terminal exonuclease domain. Reha-Krantz LJ J Virol; 1989 Nov; 63(11):4762-6. PubMed ID: 2677403 [TBL] [Abstract][Full Text] [Related]
10. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Cowart M; Gibson KJ; Allen DJ; Benkovic SJ Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768 [TBL] [Abstract][Full Text] [Related]
11. Control of mutation frequency by bacteriophage T4 DNA polymerase. I. The CB120 antimutator DNA polymerase is defective in strand displacement. Gillin FD; Nossal NG J Biol Chem; 1976 Sep; 251(17):5219-24. PubMed ID: 956182 [TBL] [Abstract][Full Text] [Related]
12. Control of mutation frequency by bacteriophage T4 DNA polymerase. II. Accuracy of nucleotide selection by the L88 mutator, CB120 antimutator, and wild type phage T4 DNA polymerases. Gillin FD; Nossal NG J Biol Chem; 1976 Sep; 251(17):5225-32. PubMed ID: 956183 [TBL] [Abstract][Full Text] [Related]
13. Nonrandom substitution of 2-aminopurine for adenine during deoxyribonucleic acid synthesis in vitro. Pless RC; Levitt LM; Bessman MJ Biochemistry; 1981 Oct; 20(21):6235-44. PubMed ID: 7030386 [TBL] [Abstract][Full Text] [Related]
14. Structure-function studies of the bacteriophage T4 DNA polymerase. Isolation of a novel suppressor mutant. Reha-Krantz LJ; Lambert JK J Mol Biol; 1985 Dec; 186(3):505-14. PubMed ID: 4093978 [TBL] [Abstract][Full Text] [Related]
15. [Use of gen5 and gen6 ts-mutants of phage T3 as indicators of inhibitors of DNA synthesis]. Scholz D; Meissner C; Rosenthal HA Z Allg Mikrobiol; 1979; 19(9):653-61. PubMed ID: 232593 [TBL] [Abstract][Full Text] [Related]
16. DNA-repair reactions by purified HeLa DNA polymerases and exonucleases. Randahl H; Elliott GC; Linn S J Biol Chem; 1988 Sep; 263(25):12228-34. PubMed ID: 2842325 [TBL] [Abstract][Full Text] [Related]
17. Mutational specificity of a bacteriophage T4 DNA polymerase mutant, mel88. Reha-Krantz LJ Mol Gen Genet; 1987 Aug; 209(1):90-3. PubMed ID: 3312960 [TBL] [Abstract][Full Text] [Related]
18. Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4. Capson TL; Peliska JA; Kaboord BF; Frey MW; Lively C; Dahlberg M; Benkovic SJ Biochemistry; 1992 Nov; 31(45):10984-94. PubMed ID: 1332748 [TBL] [Abstract][Full Text] [Related]
19. A single mutation in bacteriophage T4 DNA polymerase (A737V, tsL141) decreases its processivity as a polymerase and increases its processivity as a 3'-->5' exonuclease. Spacciapoli P; Nossal NG J Biol Chem; 1994 Jan; 269(1):438-46. PubMed ID: 8276833 [TBL] [Abstract][Full Text] [Related]
20. Mutator versus antimutator activity of a T4 DNA polymerase mutant distinguishes two different frameshifting mechanisms. Ripley LS; Glickman BW; Shoemaker NB Mol Gen Genet; 1983; 189(1):113-7. PubMed ID: 6574304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]