BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 6268170)

  • 1. Evidence for an essential arginine residue at the active site of Escherichia coli acetate kinase.
    Wong SS; Wong LJ
    Biochim Biophys Acta; 1981 Jul; 660(1):142-7. PubMed ID: 6268170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver.
    Ramakrishna S; Benjamin WB
    Biochem J; 1981 Jun; 195(3):735-43. PubMed ID: 7316981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue.
    Epperly BR; Dekker EE
    J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-Serine dehydratase from Escherichia coli. Essential arginine residue at the pyridoxal 5'-phosphate binding site.
    Kazarinoff MN; Snell EE
    J Biol Chem; 1976 Oct; 251(20):6179-82. PubMed ID: 789365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of Escherichia coli acetate kinase by N-ethylmaleimide. Protection by substrates and products.
    Wong SS; Wong LJ
    Biochim Biophys Acta; 1980 Sep; 615(1):121-31. PubMed ID: 6252971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of L-lactate monooxygenase with 2,3-butanedione and phenylglyoxal.
    Peters RG; Jones WC; Cromartie TH
    Biochemistry; 1981 Apr; 20(9):2564-71. PubMed ID: 7236621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for involvement of arginyl residue at the catalytic site of penicillin acylase from Escherichia coli.
    Prabhune AA; Sivaraman H
    Biochem Biophys Res Commun; 1990 Nov; 173(1):317-22. PubMed ID: 2256921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of Escherichia coli 2-amino-3-ketobutyrate CoA ligase by phenylglyoxal and identification of an active-site arginine peptide.
    Mukherjee JJ; Dekker EE
    Arch Biochem Biophys; 1992 Nov; 299(1):147-53. PubMed ID: 1444446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of adenylate cyclase by phenylglyoxal and other dicarbonyls. Evidence for existence of essential arginyl residues.
    Franks DJ; Tunnicliff G; Ngo TT
    Biochim Biophys Acta; 1980 Feb; 611(2):358-62. PubMed ID: 7357013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of the phosphatidylcholine-transfer protein from bovine liver with butanedione and phenylglyoxal. Evidence for one essential arginine residue.
    Akeroyd R; Lange LG; Westerman J; Wirtz KW
    Eur J Biochem; 1981 Dec; 121(1):77-81. PubMed ID: 7327172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of Acinetobacter calcoaceticus acetate kinase by diethylpyrocarbonate.
    Kim YS; Park C
    Biochim Biophys Acta; 1988 Sep; 956(2):103-9. PubMed ID: 2844264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine-specific modification of rabbit muscle phosphoglucose isomerase: differences in the inactivation by phenylglyoxal and butanedione and in the protection by substrate analogs.
    Pullan LM; Igarashi P; Noltmann EA
    Arch Biochem Biophys; 1983 Mar; 221(2):489-98. PubMed ID: 6838203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential arginine residues in the pyridine nucleotide binding sites of glutathione reductase.
    Boggaram V; Mannervik B
    Biochim Biophys Acta; 1982 Feb; 701(1):119-26. PubMed ID: 7055581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and catalytic role of arginine 88 in Escherichia coli adenylate kinase as evidenced by chemical modification and site-directed mutagenesis.
    Reinstein J; Gilles AM; Rose T; Wittinghofer A; Saint Girons I; Bârzu O; Surewicz WK; Mantsch HH
    J Biol Chem; 1989 May; 264(14):8107-12. PubMed ID: 2542263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S; Mazumder A; Banerjee RK
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state kinetics and the inactivation by 2,3-butanedione of the energy-independent transhydrogenase of Escherichia coli cell membranes.
    Homyk M; Bragg PD
    Biochim Biophys Acta; 1979 Dec; 571(2):201-17. PubMed ID: 389287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme.
    Mukherji S; Bhaduri A
    J Biol Chem; 1986 Apr; 261(10):4519-24. PubMed ID: 3957906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essentiality of the active-site arginine residue for the normal catalytic activity of Cu,Zn superoxide dismutase.
    Borders CL; Saunders JE; Blech DM; Fridovich I
    Biochem J; 1985 Sep; 230(3):771-6. PubMed ID: 4062877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.