These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 6268466)
1. Loss of haem and haemoproteins during the generation of superoxide anion and hydrogen peroxide: a pathway not involving production of carbon monoxide. Cantoni L; Gibbs AH; De Matteis F Int J Biochem; 1981; 13(7):823-30. PubMed ID: 6268466 [No Abstract] [Full Text] [Related]
2. Singlet oxygen generation in the superoxide reaction. Mao Y; Zang L; Shi X Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419 [TBL] [Abstract][Full Text] [Related]
3. Formate oxidation as a measure of hydrogen peroxide production: effect of pH and involvement of superoxide anion. DeChatelet LR; Shirley PS J Immunol; 1981 Aug; 127(2):742-5. PubMed ID: 6265556 [No Abstract] [Full Text] [Related]
4. Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxide. Kellogg EW; Fridovich I J Biol Chem; 1977 Oct; 252(19):6721-8. PubMed ID: 197102 [TBL] [Abstract][Full Text] [Related]
5. Oxidation of glycine by Phaseolus leghaemoglobin with associated catabolic reactions at the haem. Lehtovaara P Biochem J; 1978 Nov; 176(2):351-8. PubMed ID: 743243 [TBL] [Abstract][Full Text] [Related]
6. How relevant is the reoxidation of ferrocytochrome c by hydrogen peroxide when determining superoxide anion production? Turrens JF; McCord JM FEBS Lett; 1988 Jan; 227(1):43-6. PubMed ID: 2828112 [TBL] [Abstract][Full Text] [Related]
7. Role of hydrogen peroxide in the cytotoxicity of the xanthine/xanthine oxidase system. Link EM; Riley PA Biochem J; 1988 Jan; 249(2):391-9. PubMed ID: 2829857 [TBL] [Abstract][Full Text] [Related]
8. Carbon monoxide production and heme catabolism. White P Ann N Y Acad Sci; 1970 Oct; 174(1):23-31. PubMed ID: 5289599 [No Abstract] [Full Text] [Related]
9. DNA strand scission by enzymically generated oxygen radicals. Brawn K; Fridovich I Arch Biochem Biophys; 1981 Feb; 206(2):414-9. PubMed ID: 6261698 [No Abstract] [Full Text] [Related]
10. [Interaction between dinitrosyl iron complexes and intermediate products of oxidative stress]. Shumaev KB; Gubkin AA; Gubkina SA; Gudkov LL; Sviriaeva IV; Timoshin AA; Topunov AF; Vanin AF; Ruuge EK Biofizika; 2006; 51(3):472-7. PubMed ID: 16808346 [TBL] [Abstract][Full Text] [Related]
11. Role of xanthine oxidase in hydrogen peroxide production. Lacy F; Gough DA; Schmid-Schönbein GW Free Radic Biol Med; 1998 Oct; 25(6):720-7. PubMed ID: 9801073 [TBL] [Abstract][Full Text] [Related]
12. Production of superoxide anion and hydrogen peroxide by KB cells in an anoxia-reoxygenation model, and role of allopurinol. Serhrouchni M Arch Int Physiol Biochim; 1990 Dec; 98(6):455-7. PubMed ID: 1705785 [No Abstract] [Full Text] [Related]
13. Beta-adrenoceptor agonists do not reduce hydrogen peroxide production from superoxide radicals. Haenen GR; de Rooij BM; Timmerman H; Bast A Arch Int Pharmacodyn Ther; 1989; 300():68-75. PubMed ID: 2575889 [TBL] [Abstract][Full Text] [Related]
14. Possible role of the NADH-fumarate reductase in superoxide anion and hydrogen peroxide production in Trypanosoma brucei. Turrens JF Mol Biochem Parasitol; 1987 Aug; 25(1):55-60. PubMed ID: 2823135 [TBL] [Abstract][Full Text] [Related]
15. [Determination of the nucleic acids in Saccharomyces italicus (Castelli) treated with carbon monoxide (CO), potassium cyanide (KCN) or sodium azide (N3Na)]. JENEY A; SZENDREY A; VIG E Biochem Pharmacol; 1961 Jul; 7():23-30. PubMed ID: 13789816 [No Abstract] [Full Text] [Related]
16. Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes. Rosen H; Klebanoff SJ J Clin Invest; 1976 Jul; 58(1):50-60. PubMed ID: 180060 [TBL] [Abstract][Full Text] [Related]
17. The formation of biliverdin by chicken macrophages in tissue culture. Observations on the effect of inhibitors. Nichol AW Biochim Biophys Acta; 1970 Oct; 222(1):28-40. PubMed ID: 4919884 [No Abstract] [Full Text] [Related]
18. Selective and non-selective apoptosis induction in transformed and non-transformed fibroblasts by exogenous reactive oxygen and nitrogen species. Ivanovas B; Zerweck A; Bauer G Anticancer Res; 2002; 22(2A):841-56. PubMed ID: 12014661 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of hemoglobin and bile pigments. Orten JM Ann Clin Lab Sci (1971); 1971; 1(2):113-24. PubMed ID: 4949445 [No Abstract] [Full Text] [Related]
20. Photometric characteristics of haem proteins in erythropoietin-producing hepatoma cells (HepG2). Görlach A; Holtermann G; Jelkmann W; Hancock JT; Jones SA; Jones OT; Acker H Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):771-6. PubMed ID: 8384444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]