BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6268725)

  • 21. A micro method involving micro high-performance liquid chromatography-mass spectrometry for the structural characterization of neutral glycosphingolipids and monosialogangliosides.
    Suzuki M; Yamakawa T; Suzuki A
    J Biochem; 1991 Apr; 109(4):503-6. PubMed ID: 1869504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation of molecular species of glucosylceramide by high performance liquid chromatography of their benzoyl derivatives.
    Suzuki A; Handa S; Yamakawa T
    J Biochem; 1976 Nov; 80(5):1181-3. PubMed ID: 1002685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blotting of glycolipids and phospholipids from a high-performance thin-layer chromatogram to a polyvinylidene difluoride membrane.
    Taki T; Handa S; Ishikawa D
    Anal Biochem; 1994 Sep; 221(2):312-6. PubMed ID: 7810872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Further characterization of type 2 and type 3 chain blood group A glycosphingolipids from human erythrocyte membranes.
    Clausen H; Levery SB; Nudelman E; Baldwin M; Hakomori S
    Biochemistry; 1986 Nov; 25(22):7075-85. PubMed ID: 3801409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separation and purification of astaxanthin from Phaffia rhodozyma by preparative high-speed counter-current chromatography.
    Du X; Dong C; Wang K; Jiang Z; Chen Y; Yang Y; Chen F; Ni H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Sep; 1029-1030():191-197. PubMed ID: 27433984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and structures of branched blood-group-B-active glycosphingolipids from human erythrocyte membranes.
    Hanfland P; Kordowicz M; Niermann H; Egge H; Dabrowski U; Peter-Katalinic J; Dabrowski J
    Eur J Biochem; 1984 Dec; 145(3):531-42. PubMed ID: 6510415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neutral glycosphingolipids isolated from porcine corneas.
    Yue BY; Tao RV; Lee BC; Sugar J
    Curr Eye Res; 1990 Apr; 9(4):337-42. PubMed ID: 2340749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategies for preliminary characterization of novel amphoteric glycosphingolipids.
    Dennis RD; Lochnit G; Geyer R
    Methods Mol Biol; 1998; 76():197-212. PubMed ID: 9664355
    [No Abstract]   [Full Text] [Related]  

  • 29. DEAE-silica gel and DEAE-controlled porous glass as ion exchangers for isolation of glycolipids.
    Kundu SK; Chakravarty SK; Roy SK; Roy AK
    J Chromatogr; 1979 Feb; 170(1):65-72. PubMed ID: 232503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New solvent system for high-performance thin-layer chromatography and high-performance liquid chromatography of gangliosides.
    Ando S; Waki H; Kon K
    J Chromatogr; 1987 Sep; 405():125-34. PubMed ID: 3693462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Separation of derivatized glycosphingolipids into individual molecular species by high performance liquid chromatography.
    Kadowaki H; Rys-Sikora KE; Koff RS
    J Lipid Res; 1989 Apr; 30(4):616-27. PubMed ID: 2754342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct analysis of silica gel extracts from immunostained glycosphingolipids by nanoelectrospray ionization quadrupole time-of-flight mass spectrometry.
    Meisen I; Peter-Katalinić J; Müthing J
    Anal Chem; 2004 Apr; 76(8):2248-55. PubMed ID: 15080734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and partial characterization of fucose- and N-acetylglucosamine-containing neutral glycosphingolipids from human senile cataracts.
    Tao RV; Kovathana N; Shen YW
    Curr Eye Res; 1982-1983; 2(7):427-34. PubMed ID: 7182103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of neutral glycosphingolipids from porcine erythrocyte membranes.
    Sako F; Gasa S; Makita A
    Int J Biochem; 1987; 19(10):923-9. PubMed ID: 3666281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-dimensional mapping by high-performance liquid chromatography of pyridylamino oligosaccharides from various glycosphingolipids.
    Ohara K; Sano M; Kondo A; Kato I
    J Chromatogr; 1991 Nov; 586(1):35-41. PubMed ID: 1806553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-performance liquid chromatography of long-chain neutral glycosphingolipids and gangliosides.
    Lee WM; Westrick MA; Macher BA
    Biochim Biophys Acta; 1982 Sep; 712(3):498-504. PubMed ID: 6812644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-pressure liquid chromatography of glycosphingolipids (with special reference to gangliosides).
    Tjaden UR; Krol JH; Van Hoeven RP; Oomen-Meulemans EP; Emmelot P
    J Chromatogr; 1977 Jun; 136(2):233-43. PubMed ID: 885965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing detection sensitivity in gradient liquid chromatography via post-column refocusing and strong-solvent remobilization.
    De Vos J; Desmet G; Eeltink S
    J Chromatogr A; 2016 Jul; 1455():86-92. PubMed ID: 27286647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative derivatization and high-performance liquid chromatographic analysis of cyanobacterial heterocyst-type glycolipids.
    Davey MW; Lambein F
    Anal Biochem; 1992 Nov; 206(2):323-7. PubMed ID: 1443602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The separation of neutral glycosphingolipids from mammalian erythrocytes by droplet counter-current chromatography (DCC).
    Otsuka H; Suzuki A; Yamakawa T
    J Biochem; 1983 Dec; 94(6):2035-41. PubMed ID: 6671978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.