These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 6269227)
41. [The participation of chloride and sodium channels in the realization of the effects of superhigh-frequency electromagnetic fields in the centimeter range on the active transport of sodium ions across the cell membrane]. Tereshin SIu Vopr Kurortol Fizioter Lech Fiz Kult; 1997; (4):28-30. PubMed ID: 9424827 [No Abstract] [Full Text] [Related]
42. [Functional compartmentalization of oxidative and glycolytic metabolism in frog skin]. Skul'skiĭ IA; Lapin AV Dokl Akad Nauk SSSR; 1985; 280(5):1274-6. PubMed ID: 2580681 [No Abstract] [Full Text] [Related]
43. Stimulation of transepithelial sodium and chloride transport by ascorbic acid. Induction of Na+ channels is inhibited by amiloride. McGahan MC; Bentley PJ Biochim Biophys Acta; 1982 Jul; 689(2):385-92. PubMed ID: 6288098 [No Abstract] [Full Text] [Related]
44. Regulation of transport in cultured epithelia. Handler JS Biol Cell; 1985; 55(3):173-5. PubMed ID: 2423164 [No Abstract] [Full Text] [Related]
45. Effects of vasopressin on components of Na transport in frog skin. Rider J; Thomas S J Physiol; 1969 Jul; 203(1):72P-73P. PubMed ID: 5821920 [No Abstract] [Full Text] [Related]
46. Estimation of the density of sodium entry sites in frog skin epithelium from the uptake of [3H]benzamil. Aceves J; Cuthbert AW; Edwardson JM J Physiol; 1979 Oct; 295():477-90. PubMed ID: 316450 [TBL] [Abstract][Full Text] [Related]
47. Fluctuation analysis of sodium channels in epithelia. Lindemann B Annu Rev Physiol; 1984; 46():497-515. PubMed ID: 6324660 [TBL] [Abstract][Full Text] [Related]
48. Similarities between sodium channels in excitable membranes and in epithelia. Cuthbert AW Experientia; 1976 Oct; 32(10):1321-3. PubMed ID: 10179 [TBL] [Abstract][Full Text] [Related]
49. Comparison between bretylium and diphenylhydantoin interaction with mucosal sodium-channels. Ilani A; Yachin S; Lichtstein D Biochim Biophys Acta; 1984 Nov; 777(2):323-30. PubMed ID: 6091758 [TBL] [Abstract][Full Text] [Related]
50. Effects of chemical group specific reagents on sodium entry and the amiloride binding site in frog skin: evidence for separate sites. Benos DJ; Mandel LJ; Simon SA J Membr Biol; 1980 Sep; 56(2):149-58. PubMed ID: 6969317 [No Abstract] [Full Text] [Related]
52. Electrical properties of amphibian urinary bladder epithelia. IV. The current-voltage relationship of the sodium channels in the apical cell membrane. Frömter E; Higgins JT; Gebler B Soc Gen Physiol Ser; 1981; 36():31-45. PubMed ID: 6269228 [No Abstract] [Full Text] [Related]
54. [Effect of padan on active sodium transport in the epithelium of isolated frog skin]. Kontek M; Pogorzelska H; Knapowski J Med Pr; 1984; 35(1):7-11. PubMed ID: 6610815 [TBL] [Abstract][Full Text] [Related]
55. Energetics of coupled sodium chloride entry in absorptive cells of leaky epithelia. Armstrong WM; Garcia-Diaz JF; Diez de los Rios A Soc Gen Physiol Ser; 1981; 36():151-62. PubMed ID: 7280742 [No Abstract] [Full Text] [Related]
56. Sodium transport and sodium distribution in the frog skin epithelium. Govardovskij VI; Allakhverdov BL; Burovina IV; Natochin YV Folia Morphol (Praha); 1976; 24(3):277-83. PubMed ID: 1085736 [No Abstract] [Full Text] [Related]
57. Disappearance of insulin response after enzymatic treatment of sodium-transporting amphibian epithelia. Crabbé J; Khatcheressian I; Prenen S Pflugers Arch; 1976 Jun; 364(1):99-101. PubMed ID: 183180 [TBL] [Abstract][Full Text] [Related]
58. Monensin's activity in sodium-potassium transport in the skin of frogs. Membrane potentials. Martínez Larrañaga MR; Anadón Navarro A Arch Farmacol Toxicol; 1975 Aug; 1(2):111-24. PubMed ID: 1230026 [No Abstract] [Full Text] [Related]