These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 6269391)

  • 1. Growth regulation of S49 lymphoma cells: analysis of cAMP responsiveness and polyamine metabolism.
    Coffino P; Groppi VE
    Adv Cyclic Nucleotide Res; 1981; 14():399-410. PubMed ID: 6269391
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of phosphodiesterase and ornithine decarboxylase by cAMP is cell cycle independent.
    Kaiser N; Bourne HR; Insel PA; Coffino P
    J Cell Physiol; 1979 Dec; 101(3):369-74. PubMed ID: 231036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of lymphoma cell death induced by cyclic AMP.
    Coffino P; Bourne HR; Tomkins GM
    Am J Pathol; 1975 Oct; 81(1):199-204. PubMed ID: 170834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase activities of S49 lymphoma cells by agents increasing cyclic AMP.
    Honeysett JM; Insel PA
    J Cyclic Nucleotide Res; 1981; 7(5):321-32. PubMed ID: 6284819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of cyclic-AMP on the regulation of c-myc expression in T lymphoma cells.
    Albert DA
    J Clin Invest; 1995 Apr; 95(4):1490-6. PubMed ID: 7706453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage inflammatory protein-1 alpha enhances growth factor-stimulated phosphatidylcholine metabolism and increases cAMP levels in the human growth factor-dependent cell line M07e, events associated with growth suppression.
    Mantel C; Aronica S; Luo Z; Marshall MS; Kim YJ; Cooper S; Hague N; Broxmeyer HE
    J Immunol; 1995 Mar; 154(5):2342-50. PubMed ID: 7532666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proceedings: Cytolysis of cultured lymphoma cells by cyclic AMP.
    Daniel V; Lasser M; Negreanu J
    Isr J Med Sci; 1975 Nov; 11(11):1199. PubMed ID: 173679
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of high concentrations of cAMP on proliferative activity of V79-1A cells.
    Kovár J
    Folia Biol (Praha); 1982; 28(5):295-301. PubMed ID: 6293894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic AMP-induced cytolysis in S49 cells: selection of an unresponsive "deathless" mutant.
    Lemaire I; Coffino P
    Cell; 1977 May; 11(1):149-55. PubMed ID: 194702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second-site mutations in cyclic AMP-sensitive revertants of a Ka mutant of S49 mouse lymphoma cells reduce the affinity of regulatory subunit of cyclic AMP-dependent protein kinase for catalytic subunit.
    Cauthron RD; Gorman KB; Symcox MM; Steinberg RA
    J Cell Physiol; 1995 Nov; 165(2):376-85. PubMed ID: 7593216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of cell proliferation: the cell cycle.
    Studzinski GP
    Ann Clin Lab Sci; 1974; 4(2):115-20. PubMed ID: 4362219
    [No Abstract]   [Full Text] [Related]  

  • 12. Synergistic stimulation of DNA synthesis by cyclic AMP derivatives and growth factors in mouse 3T3 cells.
    Rozengurt E
    J Cell Physiol; 1982 Aug; 112(2):243-50. PubMed ID: 6288743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple mechanisms of growth inhibition by cyclic AMP derivatives in rat GH1 pituitary cells: isolation of an adenylate cyclase-deficient variant.
    Martin TF; Ronning SA
    J Cell Physiol; 1981 Nov; 109(2):289-97. PubMed ID: 6271795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of polyamines in cell cycle kinetics as studied in a transgenic system.
    Nasizadeh S; Myhre L; Thiman L; Alm K; Oredsson S; Persson L
    Exp Cell Res; 2005 Aug; 308(2):254-64. PubMed ID: 15923003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of catecholamine-mediated destabilization of messenger RNA encoding Thy-1 protein in T-lineage cells.
    Wajeman-Chao SA; Lancaster SA; Graf LH; Chambers DA
    J Immunol; 1998 Nov; 161(9):4825-33. PubMed ID: 9794415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on transmembrane control of histone phosphorylation.
    Iwasa Y
    Kobe J Med Sci; 1980 Dec; 26(4):237-51. PubMed ID: 6261035
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of cyclic nucleotides on growth activity of V79-1A cells.
    Kovár J
    Folia Biol (Praha); 1981; 27(5):346-53. PubMed ID: 6271603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamine depletion in human melanoma cells leads to G1 arrest associated with induction of p21WAF1/CIP1/SDI1, changes in the expression of p21-regulated genes, and a senescence-like phenotype.
    Kramer DL; Chang BD; Chen Y; Diegelman P; Alm K; Black AR; Roninson IB; Porter CW
    Cancer Res; 2001 Nov; 61(21):7754-62. PubMed ID: 11691789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of cell growth.
    LoBue J; LoBue PA
    Transplant Proc; 1984 Apr; 16(2):341-8. PubMed ID: 6202026
    [No Abstract]   [Full Text] [Related]  

  • 20. Retinoblastoma protein is rapidly dephosphorylated by elevated cyclic adenosine monophosphate levels in human B-lymphoid cells.
    Christoffersen J; Smeland EB; Stokke T; Taskén K; Andersson KB; Blomhoff HK
    Cancer Res; 1994 Apr; 54(8):2245-50. PubMed ID: 8174134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.