These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6269572)

  • 1. A method to measure the water-holding properties of dietary fibre using suction pressure.
    Robertson JA; Eastwood MA
    Br J Nutr; 1981 Sep; 46(2):247-55. PubMed ID: 6269572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of water-holding properties of fibre and their faecal bulking ability in man.
    Eastwood MA; Robertson JA; Brydon WG; MacDonald D
    Br J Nutr; 1983 Nov; 50(3):539-47. PubMed ID: 6315051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of in vitro fermentation using human faecal inoculum on the water-holding capacity of dietary fibre.
    McBurney MI; Horvath PJ; Jeraci JL; Van Soest PJ
    Br J Nutr; 1985 Jan; 53(1):17-24. PubMed ID: 2998439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An examination of factors which may affect the water holding capacity of dietary fibre.
    Robertson JA; Eastwood MA
    Br J Nutr; 1981 Jan; 45(1):83-8. PubMed ID: 6258627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural features and water holding capacities of pressed potato fibre polysaccharides.
    Ramaswamy UR; Kabel MA; Schols HA; Gruppen H
    Carbohydr Polym; 2013 Apr; 93(2):589-96. PubMed ID: 23499100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-holding by dietary fibre in vitro and its relationship to faecal output in man.
    Stephen AM; Cummings JH
    Gut; 1979 Aug; 20(8):722-9. PubMed ID: 488767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical properties to support fibre characterization in monogastric animal nutrition.
    Slama J; Schedle K; Wurzer GK; Gierus M
    J Sci Food Agric; 2019 Jun; 99(8):3895-3902. PubMed ID: 30684273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of cell wall-degrading enzymes on water-holding capacity and solubility of dietary fibre in rye and wheat bran.
    Petersson K; Nordlund E; Tornberg E; Eliasson AC; Buchert J
    J Sci Food Agric; 2013 Mar; 93(4):882-9. PubMed ID: 22865289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological effects of fibre-rich types of bread. 2. Dietary fibre from bread: digestibility by the intestinal microflora and water-holding capacity in the colon of human subjects.
    Van Dokkum W; Pikaar NA; Thissen JT
    Br J Nutr; 1983 Jul; 50(1):61-74. PubMed ID: 6309212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the water-holding capacity of wheat bran products prepared by wet and dry smashing methods in vitro and effect on the gastrointestinal retention time in rats in vivo.
    Hori T; Matsumoto K; Ikeda M; Moriyama-Ebina R; Sakaitani-Kado Y; Morotomi M
    Int J Vitam Nutr Res; 2000 Jul; 70(4):178-84. PubMed ID: 10989767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The water-holding capacity of three starchy legumes in the raw, cooked and fibre-rich fraction forms.
    Elhardallou SB; Walker AF
    Plant Foods Hum Nutr; 1993 Sep; 44(2):171-9. PubMed ID: 8397397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate.
    Martínez R; Torres P; Meneses MA; Figueroa JG; Pérez-Álvarez JA; Viuda-Martos M
    Food Chem; 2012 Dec; 135(3):1520-6. PubMed ID: 22953888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of potato fibre to improve bread physico-chemical properties during storage.
    Curti E; Carini E; Diantom A; Vittadini E
    Food Chem; 2016 Mar; 195():64-70. PubMed ID: 26575713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dietary fiber and feeding frequency on ruminal fermentation, digesta water-holding capacity, and fractional turnover of contents.
    Froetschel MA; Amos HE
    J Anim Sci; 1991 Mar; 69(3):1312-21. PubMed ID: 1648068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved starch recovery from potatoes by enzymes and reduced water holding of the residual fibres.
    Ramasamy UR; Lips S; Bakker R; Gruppen H; Kabel MA
    Carbohydr Polym; 2014 Nov; 113():256-63. PubMed ID: 25256483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Characterization and Water Holding Capacity of Fibre-rich Feedstuffs Used for Pigs in Vietnam.
    Ngoc TT; Len NT; Lindberg JE
    Asian-Australas J Anim Sci; 2012 Jun; 25(6):861-8. PubMed ID: 25049638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The consequences of fruit and vegetable fibre fermentation on their binding capacity for MeIQx and the effects of soluble fibre sources on the binding affinity of wheat bran preparations.
    Ryden P; Robertson JA
    Carcinogenesis; 1995 Aug; 16(8):1711-6. PubMed ID: 7634394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical characterisation of dietary fibre components and their ability to bind some process-induced mutagenic heterocyclic amines, Trp-P-1, Trp-P-2, AαC and MeAαC.
    Raman M; Nilsson U; Skog K; Lawther M; Nair B; Nyman M
    Food Chem; 2013 Jun; 138(4):2219-24. PubMed ID: 23497879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gastrointestinal implications in the rat of wheat bran, oat bran and pea fibre.
    Hansen I; Knudsen KE; Eggum BO
    Br J Nutr; 1992 Sep; 68(2):451-62. PubMed ID: 1332746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of scaled feed intake in weaner pigs using physico-chemical properties of fibrous feeds.
    Ndou SP; Gous RM; Chimonyo M
    Br J Nutr; 2013 Aug; 110(4):774-80. PubMed ID: 23340050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.