These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6269589)

  • 21. Analysis of time-resolved fluorescence anisotropy in lipid-protein systems. II. Application to tryptophan fluorescence of bacteriophage M13 coat protein incorporated in phospholipid bilayers.
    Peng K; Visser AJ; van Hoek A; Wolfs CJ; Hemminga MA
    Eur Biophys J; 1990; 18(5):285-93. PubMed ID: 2369871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence of tryptophan dipeptides: correlations with the rotamer model.
    Chen RF; Knutson JR; Ziffer H; Porter D
    Biochemistry; 1991 May; 30(21):5184-95. PubMed ID: 2036384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resolution of fluorescence intensity decays of the two tryptophan residues in glutamine-binding protein from Escherichia coli using single tryptophan mutants.
    Axelsen PH; Bajzer Z; Prendergast FG; Cottam PF; Ho C
    Biophys J; 1991 Sep; 60(3):650-9. PubMed ID: 1932553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-resolved tryptophan fluorescence anisotropy investigation of bacteriophage M13 coat protein in micelles and mixed bilayers.
    Datema KP; Visser AJ; van Hoek A; Wolfs CJ; Spruijt RB; Hemminga MA
    Biochemistry; 1987 Sep; 26(19):6145-52. PubMed ID: 3318926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation between internal motion and emission kinetics of tryptophan residues in proteins.
    Kouyama T; Kinosita K; Ikegami A
    Eur J Biochem; 1989 Jul; 182(3):517-21. PubMed ID: 2753033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural fluctuations of a helical polypeptide traversing a lipid bilayer.
    Vogel H; Nilsson L; Rigler R; Voges KP; Jung G
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5067-71. PubMed ID: 3079525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into the conformational dynamics of specific regions of porcine pancreatic phospholipase A2 from a time-resolved fluorescence study of a genetically inserted single tryptophan residue.
    Kuipers OP; Vincent M; Brochon JC; Verheij HM; de Haas GH; Gallay J
    Biochemistry; 1991 Sep; 30(36):8771-85. PubMed ID: 1888737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies.
    Lakowicz JR; Freshwater G; Weber G
    Biophys J; 1980 Oct; 32(1):591-601. PubMed ID: 7248463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subnanosecond motions of tryptophan residues in proteins.
    Munro I; Pecht I; Stryer L
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):56-60. PubMed ID: 284374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies of the fluorescence from tryptophan in melittin.
    Tran CD; Beddard GS
    Eur Biophys J; 1985; 13(1):59-64. PubMed ID: 4076050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants.
    Royer CA
    Biophys J; 1992 Sep; 63(3):741-50. PubMed ID: 1420911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Applications to anisotropic rotations and to protein dynamics.
    Lakowicz JR; Cherek H; Gryczynski I; Joshi N; Johnson ML
    Biophys J; 1987 May; 51(5):755-68. PubMed ID: 3593873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tryptophan interactions of gramicidin A' channels in lipids: a time-resolved fluorescence study.
    Masotti L; Cavatorta P; Sartor G; Casali E; Szabo AG
    Biochim Biophys Acta; 1986 Nov; 862(2):265-72. PubMed ID: 2430620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence lifetime and spectral study of the acid expansion of bovine serum albumin.
    Brewer JM; Bastiaens P; Lee J
    Biophys Chem; 1987 Oct; 28(1):77-88. PubMed ID: 3689873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decay of the tryptophan fluorescence anisotropy in bacteriorhodopsin and its modified forms.
    van den Berg R; Jang DJ; el-Sayed MA
    Biophys J; 1990 Apr; 57(4):759-64. PubMed ID: 2344462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence quenching as an indicator for structural fluctuations in liver alcohol dehydrogenase.
    Barboy N; Feitelson J
    Biochemistry; 1978 Nov; 17(23):4923-6. PubMed ID: 718866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics of tryptophan in ribonuclease-T1. II. Correlations with fluorescence.
    Axelsen PH; Prendergast FG
    Biophys J; 1989 Jul; 56(1):43-66. PubMed ID: 2502198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tryptophan fluorescence of terminal deoxynucleotidyl transferase: effects of quenchers on time-resolved emission spectra.
    Robbins DJ; Deibel MR; Barkley MD
    Biochemistry; 1985 Dec; 24(25):7250-7. PubMed ID: 4084579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex photophysics of the single tryptophan of porcine pancreatic phospholipase A2, its zymogen, and an enzyme/micelle complex.
    Ludescher RD; Volwerk JJ; de Haas GH; Hudson BS
    Biochemistry; 1985 Dec; 24(25):7240-9. PubMed ID: 4084578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence quenching dynamics of tryptophan in proteins. Effect of internal rotation under potential barrier.
    Tanaka F; Mataga N
    Biophys J; 1987 Mar; 51(3):487-95. PubMed ID: 3032294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.