These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 6269589)

  • 41. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin.
    Kamal JK; Behere DV
    J Biol Inorg Chem; 2002 Mar; 7(3):273-83. PubMed ID: 11935351
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Time-resolved fluorescence and computational studies of adenylylated glutamine synthetase: analysis of intersubunit interactions.
    Atkins WM; Cader BM; Hemmingsen J; Villafranca JJ
    Protein Sci; 1993 May; 2(5):800-13. PubMed ID: 8098638
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay.
    Dijkstra DS; Broos J; Visser AJ; van Hoek A; Robillard GT
    Biochemistry; 1997 Apr; 36(16):4860-6. PubMed ID: 9125506
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Subnanosecond motions of tryptophan residues in proteins.
    Munro I; Pecht I; Stryer L
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):56-60. PubMed ID: 284374
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Histidine-tryptophan interactions in T4 lysozyme: 'anomalous' pH dependence of fluorescence.
    Van Gilst M; Hudson BS
    Biophys Chem; 1996 Dec; 63(1):17-25. PubMed ID: 8981748
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The use of a long-lifetime component of tryptophan to detect slow orientational fluctuations of proteins.
    Döring K; Beck W; Konermann L; Jähnig F
    Biophys J; 1997 Jan; 72(1):326-34. PubMed ID: 8994617
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Time-resolved fluorescence anisotropy of HIV-1 protease inhibitor complexes correlates with inhibitory activity.
    Kungl AJ; Visser NV; van Hoek A; Visser AJ; Billich A; Schilk A; Gstach H; Auer M
    Biochemistry; 1998 Mar; 37(9):2778-86. PubMed ID: 9485428
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies of the fluorescence from tryptophan in melittin.
    Tran CD; Beddard GS
    Eur Biophys J; 1985; 13(1):59-64. PubMed ID: 4076050
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs.
    de Foresta B; Gallay J; Sopkova J; Champeil P; Vincent M
    Biophys J; 1999 Dec; 77(6):3071-84. PubMed ID: 10585929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time-resolved fluorescence study of azurin variants: conformational heterogeneity and tryptophan mobility.
    Kroes SJ; Canters GW; Gilardi G; van Hoek A; Visser AJ
    Biophys J; 1998 Nov; 75(5):2441-50. PubMed ID: 9788939
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants.
    Royer CA
    Biophys J; 1992 Sep; 63(3):741-50. PubMed ID: 1420911
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Backbone dynamics of Tet repressor alpha8intersectionalpha9 loop.
    Vergani B; Kintrup M; Hillen W; Lami H; Piémont E; Bombarda E; Alberti P; Doglia SM; Chabbert M
    Biochemistry; 2000 Mar; 39(10):2759-68. PubMed ID: 10704228
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Applications to anisotropic rotations and to protein dynamics.
    Lakowicz JR; Cherek H; Gryczynski I; Joshi N; Johnson ML
    Biophys J; 1987 May; 51(5):755-68. PubMed ID: 3593873
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular mechanics analysis of Tet repressor TRP-43 fluorescence.
    Silvi Antonini P; Hillen W; Ettner N; Hinrichs W; Fantucci P; Doglia SM; Bousquet JA; Chabbert M
    Biophys J; 1997 Apr; 72(4):1800-11. PubMed ID: 9083684
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tryptophan interactions of gramicidin A' channels in lipids: a time-resolved fluorescence study.
    Masotti L; Cavatorta P; Sartor G; Casali E; Szabo AG
    Biochim Biophys Acta; 1986 Nov; 862(2):265-72. PubMed ID: 2430620
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluorescence lifetime and spectral study of the acid expansion of bovine serum albumin.
    Brewer JM; Bastiaens P; Lee J
    Biophys Chem; 1987 Oct; 28(1):77-88. PubMed ID: 3689873
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Decay of the tryptophan fluorescence anisotropy in bacteriorhodopsin and its modified forms.
    van den Berg R; Jang DJ; el-Sayed MA
    Biophys J; 1990 Apr; 57(4):759-64. PubMed ID: 2344462
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence quenching as an indicator for structural fluctuations in liver alcohol dehydrogenase.
    Barboy N; Feitelson J
    Biochemistry; 1978 Nov; 17(23):4923-6. PubMed ID: 718866
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular dynamics of tryptophan in ribonuclease-T1. II. Correlations with fluorescence.
    Axelsen PH; Prendergast FG
    Biophys J; 1989 Jul; 56(1):43-66. PubMed ID: 2502198
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure and dynamics of melittin in lysomyristoyl phosphatidylcholine micelles determined by nuclear magnetic resonance.
    Yuan P; Fisher PJ; Prendergast FG; Kemple MD
    Biophys J; 1996 May; 70(5):2223-38. PubMed ID: 9172746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.