These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 6269920)

  • 1. Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function.
    Kirk CJ; Creba JA; Downes CP; Michell RH
    Biochem Soc Trans; 1981 Oct; 9(5):377-9. PubMed ID: 6269920
    [No Abstract]   [Full Text] [Related]  

  • 2. Is vasopressin-stimulated inositol lipid breakdown intrinsic to the mechanism of Ca2+-mobilization at V1 vasopressin receptors?
    Kirk CJ; Creba JA; Hawkins PT; Michell RH
    Prog Brain Res; 1983; 60():405-11. PubMed ID: 6320275
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of quinacrine on vasopressin-induced changes in glycogen phosphorylase activity, Ca2+ transport and phosphoinositide metabolism in isolated hepatocytes.
    Barritt GJ; Milton SE; Hughes BP
    Biochem Pharmacol; 1988 Jan; 37(2):161-7. PubMed ID: 2829912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-stimulated inositol lipid metabolism in the liver: relationship to receptor function.
    Kirk CJ
    Cell Calcium; 1982 Oct; 3(4-5):399-411. PubMed ID: 6297741
    [No Abstract]   [Full Text] [Related]  

  • 5. Hormone-mediated inositol lipid breakdown in hepatocytes and WRK1 cells: relationship to receptor function.
    Kirk CJ; Guillon G; Balestre MN; Creba JA; Michell RH; Jard S
    Biochimie; 1985; 67(10-11):1161-7. PubMed ID: 2866800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes.
    Kirk CJ; Rodrigues LM; Hems DA
    Biochem J; 1979 Feb; 178(2):493-6. PubMed ID: 444224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation by vasopressin and alpha-catecholamines of phosphatidylinositol formation in isolated rat liver parenchymal cells.
    Tolbert ME; White AC; Aspry K; Cutts J; Fain JN
    J Biol Chem; 1980 Mar; 255(5):1938-44. PubMed ID: 6766458
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation.
    Billah MM; Michell RH
    Biochem J; 1979 Sep; 182(3):661-8. PubMed ID: 229824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationships between receptor binding capacity for norepinephrine, angiotensin II, and vasopressin and release of inositol trisphosphate, Ca2+ mobilization, and phosphorylase activation in rat liver.
    Lynch CJ; Blackmore PF; Charest R; Exton JH
    Mol Pharmacol; 1985 Aug; 28(2):93-9. PubMed ID: 2991741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidylinositol breakdown induced by vasopressin and epinephrine in hepatocytes is calcium-dependent.
    Prpić V; Blackmore PF; Exton JH
    J Biol Chem; 1982 Oct; 257(19):11323-31. PubMed ID: 6811579
    [No Abstract]   [Full Text] [Related]  

  • 11. Proceedings: Is calcium the second messenger in liver for cyclic AMP-independent glycogenolytic hormones?
    De Wulf H; Keppens S
    Arch Int Physiol Biochim; 1976 Feb; 84(1):159-60. PubMed ID: 60937
    [No Abstract]   [Full Text] [Related]  

  • 12. alpha-Adrenergic activation of phosphorylase in liver cells involves mobilization of intracellular calcium without influx of extracellular calcium.
    Blackmore PF; Hughes BP; Shuman EA; Exton JH
    J Biol Chem; 1982 Jan; 257(1):190-7. PubMed ID: 6273424
    [No Abstract]   [Full Text] [Related]  

  • 13. Phosphatidylinositol metabolism in rat hepatocytes stimulated by vasopressin.
    Kirk CJ; Michell RH; Hems DA
    Biochem J; 1981 Jan; 194(1):155-65. PubMed ID: 7030316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hormone receptor and stimulated turnover of inositol phospholipids; role of PI response in the enhancement of Ca2+ influx].
    Takenawa T
    Tanpakushitsu Kakusan Koso; 1982 Aug; 27(10):1291-305. PubMed ID: 6294743
    [No Abstract]   [Full Text] [Related]  

  • 15. Lack of V1 vasopressin receptors in rabbit hepatocytes.
    Vandekerckhove A; Miot F; Keppens S; De Wulf H
    Biochem J; 1989 Apr; 259(2):609-11. PubMed ID: 2524192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential calcium mobilization by vasopressin, angiotensin II, gastrin-releasing peptide, and adenosine triphosphate in adult and fetal hepatocytes. Relevance for the activation of calcium-dependent enzymes.
    Junco M; Díaz-Guerra MJ; Boscá L
    Endocrinology; 1993 Jan; 132(1):309-18. PubMed ID: 8380381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous desensitization of the cyclic AMP-independent glycogenolytic response in rat liver cells.
    Bréant B; Keppens S; De Wulf H
    Biochem J; 1981 Dec; 200(3):509-14. PubMed ID: 6123310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular vasopressin receptors mediate phosphatidylinositol turnover and calcium efflux in an established smooth muscle cell line.
    Aiyar N; Nambi P; Stassen FL; Crooke ST
    Life Sci; 1986 Jul; 39(1):37-45. PubMed ID: 3014249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes.
    Thomas AP; Marks JS; Coll KE; Williamson JR
    J Biol Chem; 1983 May; 258(9):5716-25. PubMed ID: 6304096
    [No Abstract]   [Full Text] [Related]  

  • 20. Receptor-stimulated inositol phospholipid metabolism in the central nervous system.
    Downes CP
    Cell Calcium; 1982 Oct; 3(4-5):413-28. PubMed ID: 6130848
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.