These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6270104)

  • 1. Identification of inhibitor-2 as the ATP-mg-dependent protein phosphatase modulator.
    Yang SD; Vandenheede JR; Merlevede W
    J Biol Chem; 1981 Oct; 256(20):10231-4. PubMed ID: 6270104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of a reconstituted Mg-ATP-dependent protein phosphatase.
    Resink TJ; Hemmings BA; Tung HY; Cohen P
    Eur J Biochem; 1983 Jun; 133(2):455-61. PubMed ID: 6303789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ATP,Mg-dependent protein phosphatase. Regulation by inhibitor-1 or modulator protein and stabilizing role of Mg2+ ions.
    Abeele CV; Vandenheede JR; Merlevede W
    J Biol Chem; 1987 Oct; 262(29):14086-9. PubMed ID: 2820994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinase FA-mediated regulation of rabbit skeletal muscle protein phosphatase. Reversible phosphorylation of the modulator subunit.
    Vandenheede JR; Yang SD; Merlevede W; Jurgensen S; Chock PB
    J Biol Chem; 1985 Sep; 260(19):10512-6. PubMed ID: 2993277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and inactivation-reactivation of phosphorylase phosphatase from the protein-glycogen complex.
    Villa-Moruzzi E
    Arch Biochem Biophys; 1986 May; 247(1):155-64. PubMed ID: 3010875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a tyrosyl phosphatase activator from rabbit skeletal muscle and Xenopus laevis oocytes.
    Cayla X; Goris J; Hermann J; Hendrix P; Ozon R; Merlevede W
    Biochemistry; 1990 Jan; 29(3):658-67. PubMed ID: 2159785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylase phosphatase. Interconversion of active and inactive forms.
    Villa-Moruzzi E; Ballou LM; Fischer EH
    J Biol Chem; 1984 May; 259(9):5857-63. PubMed ID: 6325451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP x Mg-dependent protein phosphatase from rabbit skeletal muscle. I. Purification of the enzyme and its regulation by the interaction with an activating protein factor.
    Yang SD; Vandenheede JR; Goris J; Merlevede W
    J Biol Chem; 1980 Dec; 255(24):11759-67. PubMed ID: 6254981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification, subunit composition and regulatory properties of the ATP X Mg2+-dependent form of type I phosphoprotein phosphatase from bovine heart.
    Price DJ; Tabarini D; Li HC
    Eur J Biochem; 1986 Aug; 158(3):635-45. PubMed ID: 3015619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of activation of the ATP X Mg(II)-dependent phosphoprotein phosphatase by kinase FA.
    Jurgensen S; Shacter E; Huang CY; Chock PB; Yang SD; Vandenheede JR; Merlevede W
    J Biol Chem; 1984 May; 259(9):5864-70. PubMed ID: 6325452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of active protein phosphatase to the ATP-Mg-dependent enzyme form by inhibitor-2.
    Vandenheede JR; Goris J; Yang SD; Camps T; Merlevede W
    FEBS Lett; 1981 May; 127(1):1-3. PubMed ID: 6265276
    [No Abstract]   [Full Text] [Related]  

  • 12. Role of the modulator protein in the interconversion of rabbit skeletal muscle protein phosphatase.
    Vandenheede JR; Yang SD; Merlevede W
    Biochem Biophys Res Commun; 1983 Sep; 115(3):871-7. PubMed ID: 6313000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunochemical characterization of the modulator protein of the ATP,Mg-dependent protein phosphatase.
    Vanden Abeele C; Vandenheede JR; Merlevede W
    FEBS Lett; 1988 May; 232(1):167-71. PubMed ID: 2835263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP x Mg-dependent protein phosphatase from rabbit skeletal muscle. II. Purification of the activating factor and its characterization as a bifunctional protein also displaying synthase kinase activity.
    Vandenheede JR; Yang SD; Goris J; Merlevede W
    J Biol Chem; 1980 Dec; 255(24):11768-74. PubMed ID: 6254982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of an ATP.Mg-dependent protein phosphatase from pig brain.
    Yang SD; Fong YL
    J Biol Chem; 1985 Nov; 260(25):13464-70. PubMed ID: 2414281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and partial characterization of a latent ATP, Mg-dependent protein phosphatase in rabbit skeletal muscle cytosol.
    Vandenheede JR; Staquet S; Merlevede W
    Mol Cell Biochem; 1989 May; 87(1):31-9. PubMed ID: 2549391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the phosphatase deinhibitor protein phosphatases in rabbit skeletal muscle.
    Goris J; Waelkens E; Merlevede W
    Biochem J; 1986 Oct; 239(1):109-14. PubMed ID: 3026364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rabbit skeletal muscle protein phosphatase(s). Identity of phosphorylase and synthase phosphatase and interconversion to the ATP-Mg-dependent enzyme form.
    Vandenheede JR; Yang SD; Merlevede W
    J Biol Chem; 1981 Jun; 256(11):5894-900. PubMed ID: 6263894
    [No Abstract]   [Full Text] [Related]  

  • 19. The protein phosphatases involved in cellular regulation. Comparison of native and reconstituted Mg-ATP-dependent protein phosphatases from rabbit skeletal muscle.
    Tung HY; Cohen P
    Eur J Biochem; 1984 Nov; 145(1):57-64. PubMed ID: 6092083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on in activation and reactivation of homogeneous rabbit liver phosphoprotein phosphatases by inorganic pyorphosphate and divalent cations.
    Khandelwal RL; Kasmani SA
    Biochim Biophys Acta; 1980; 613(1):95-105. PubMed ID: 6246957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.