These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 627081)

  • 61. Polarographic microdetermination of D-glucose anomers with beta-D-glucose oxidase.
    Okuda J; Miwa I
    Anal Biochem; 1971 Feb; 39(2):387-94. PubMed ID: 5555468
    [No Abstract]   [Full Text] [Related]  

  • 62. A general enzyme thermistor based on specific reversible immobilization using the antigen--antibody interaction. Assay of hydrogen peroxide, penicillin, sucrose, glucose, phenol and tyrosine.
    Mattiasson B
    FEBS Lett; 1977 May; 77(1):107-10. PubMed ID: 404191
    [No Abstract]   [Full Text] [Related]  

  • 63. A new preparation of Au nanoplates and their application for glucose sensing.
    Zhang Y; Chang G; Liu S; Lu W; Tian J; Sun X
    Biosens Bioelectron; 2011 Oct; 28(1):344-8. PubMed ID: 21839630
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Immobilized enzymes: a prototype apparatus for oxidase enzymes in chemical analysis utilizing covalently bound glucose oxidase.
    Weibel MK; Dritschilo W; Bright HJ; Humphrey AE
    Anal Biochem; 1973 Apr; 52(2):402-14. PubMed ID: 4349183
    [No Abstract]   [Full Text] [Related]  

  • 65. High performance liquid chromatography of glucose using a post-column reactor of immobilized enzyme followed by electrochemical detection (glucose-LCEC).
    Watanabe N
    Biomed Chromatogr; 1991 Jul; 5(4):180-3. PubMed ID: 1912726
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application.
    Tian J; Liu Q; Ge C; Xing Z; Asiri AM; Al-Youbi AO; Sun X
    Nanoscale; 2013 Oct; 5(19):8921-4. PubMed ID: 23934305
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes.
    Hrapovic S; Liu Y; Male KB; Luong JH
    Anal Chem; 2004 Feb; 76(4):1083-8. PubMed ID: 14961742
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Reactive intermediates-induced potential responses of a polymeric membrane electrode for ultrasensitive potentiometric biosensing.
    Wang X; Qin W
    Chem Commun (Camb); 2012 Apr; 48(34):4073-5. PubMed ID: 22430082
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ultrasensitive fluorometric determination of hydrogen peroxide and glucose by using multiferroic BiFeO(3) nanoparticles as a catalyst.
    Luo W; Li YS; Yuan J; Zhu L; Liu Z; Tang H; Liu S
    Talanta; 2010 May; 81(3):901-7. PubMed ID: 20298871
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enzyme-free amperometric sensing of hydrogen peroxide and glucose at a hierarchical Cu2O modified electrode.
    Li S; Zheng Y; Qin GW; Ren Y; Pei W; Zuo L
    Talanta; 2011 Sep; 85(3):1260-4. PubMed ID: 21807180
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Novel planar glucose biosensors for continuous monitoring use.
    Ricci F; Moscone D; Tuta CS; Palleschi G; Amine A; Poscia A; Valgimigli F; Messeri D
    Biosens Bioelectron; 2005 Apr; 20(10):1993-2000. PubMed ID: 15741068
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhanced electrochemiluminescence from luminol at multi-walled carbon nanotubes decorated with palladium nanoparticles: a novel route for the fabrication of an oxygen sensor and a glucose biosensor.
    Haghighi B; Bozorgzadeh S
    Anal Chim Acta; 2011 Jul; 697(1-2):90-7. PubMed ID: 21641423
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A potentially implantable enzyme electrode for amperometric measurement of glucose.
    Kerner W; Zier H; Steinbach G; Brückel J; Pfeiffer EF; Weiss T; Cammann K; Planck H
    Horm Metab Res Suppl; 1988; 20():8-13. PubMed ID: 3248792
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Homogeneous mechanism of ascorbic acid interference in hydrogen peroxide detection at enzyme-modified electrodes.
    Lowry JP; O'Neill RD
    Anal Chem; 1992 Feb; 64(4):453-6. PubMed ID: 1616131
    [No Abstract]   [Full Text] [Related]  

  • 75. Fabrication of a LRET-based upconverting hybrid nanocomposite for turn-on sensing of H2O2 and glucose.
    Wu S; Kong XJ; Cen Y; Yuan J; Yu RQ; Chu X
    Nanoscale; 2016 Apr; 8(16):8939-46. PubMed ID: 27074732
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fabrication of Liquid-Crystal-Based Optical Sensing Platform for Detection of Hydrogen Peroxide and Blood Glucose.
    Qi L; Hu Q; Kang Q; Yu L
    Anal Chem; 2018 Oct; 90(19):11607-11613. PubMed ID: 30184427
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synthesis of orange-red emissive carbon dots for fluorometric enzymatic determination of glucose.
    Mutuyimana FP; Liu J; Na M; Nsanzamahoro S; Rao Z; Chen H; Chen X
    Mikrochim Acta; 2018 Oct; 185(11):518. PubMed ID: 30361830
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array.
    Kang Q; Yang L; Cai Q
    Bioelectrochemistry; 2008 Nov; 74(1):62-5. PubMed ID: 18614406
    [TBL] [Abstract][Full Text] [Related]  

  • 79. One-minute blood glucose testing.
    DeLawter DE
    Am Fam Physician; 1973 Sep; 8(3):174-5. PubMed ID: 4729715
    [No Abstract]   [Full Text] [Related]  

  • 80. Peptide nanotube-modified electrodes for enzyme-biosensor applications.
    Yemini M; Reches M; Gazit E; Rishpon J
    Anal Chem; 2005 Aug; 77(16):5155-9. PubMed ID: 16097753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.