BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 6271040)

  • 1. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria.
    Bowien B; Schlegel HG
    Annu Rev Microbiol; 1981; 35():405-52. PubMed ID: 6271040
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxygen tolerance of strictly aerobic hydrogen-oxidizing bacteria.
    Wilde E; Schlegel HG
    Antonie Van Leeuwenhoek; 1982 May; 48(2):131-43. PubMed ID: 7049081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial gas metabolism.
    Cole JA
    Adv Microb Physiol; 1976; 14(11):1-92. PubMed ID: 188319
    [No Abstract]   [Full Text] [Related]  

  • 4. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation.
    Appel AM; Bercaw JE; Bocarsly AB; Dobbek H; DuBois DL; Dupuis M; Ferry JG; Fujita E; Hille R; Kenis PJ; Kerfeld CA; Morris RH; Peden CH; Portis AR; Ragsdale SW; Rauchfuss TB; Reek JN; Seefeldt LC; Thauer RK; Waldrop GL
    Chem Rev; 2013 Aug; 113(8):6621-58. PubMed ID: 23767781
    [No Abstract]   [Full Text] [Related]  

  • 5. One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide.
    Ogo S; Mori Y; Ando T; Matsumoto T; Yatabe T; Yoon KS; Hayashi H; Asano M
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9723-9726. PubMed ID: 28585418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity.
    Bonam D; Lehman L; Roberts GP; Ludden PW
    J Bacteriol; 1989 Jun; 171(6):3102-7. PubMed ID: 2498285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of carbon monoxide by bacteria.
    Kim YM; Hegeman GD
    Int Rev Cytol; 1983; 81():1-32. PubMed ID: 6409833
    [No Abstract]   [Full Text] [Related]  

  • 8. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Dec; 35(49):15814-21. PubMed ID: 8961945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenase and ribulose diphosphate carboxylase during autotrophic, heterotrophic, and mixotrophic growth of scotochromogenic mycobacteria.
    Park SS; DeCicco BT
    J Bacteriol; 1976 Aug; 127(2):731-8. PubMed ID: 956116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic Analysis of Calderihabitans maritimus KKC1, a Thermophilic, Hydrogenogenic, Carboxydotrophic Bacterium Isolated from Marine Sediment.
    Omae K; Yoneda Y; Fukuyama Y; Yoshida T; Sako Y
    Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28526793
    [No Abstract]   [Full Text] [Related]  

  • 11. Biology of aerobic carbon monoxide-oxidizing bacteria.
    Meyer O; Schlegel HG
    Annu Rev Microbiol; 1983; 37():277-310. PubMed ID: 6416144
    [No Abstract]   [Full Text] [Related]  

  • 12. Physiology and biochemistry of autotrophic bacteria.
    Codd GA; Kuenen JG
    Antonie Van Leeuwenhoek; 1987; 53(1):3-14. PubMed ID: 2823704
    [No Abstract]   [Full Text] [Related]  

  • 13. Chemolithotrophic growth and regulation of hydrogenase formation in the coryneform hydrogen bacterium strain 11/x.
    Canevascini G; Eberhardt U
    Arch Microbiol; 1975 May; 103(3):283-91. PubMed ID: 807174
    [No Abstract]   [Full Text] [Related]  

  • 14. Electron transport system of an aerobic carbon monoxide-oxidizing bacterium.
    Kim YM; Hegeman GD
    J Bacteriol; 1981 Dec; 148(3):991-4. PubMed ID: 6273386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Engineering of Carbon Monoxide-dependent Hydrogen-producing Machinery in Parageobacillus thermoglucosidasius.
    Adachi Y; Inoue M; Yoshida T; Sako Y
    Microbes Environ; 2020; 35(4):. PubMed ID: 33087627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide.
    Islam ZF; Cordero PRF; Feng J; Chen YJ; Bay SK; Jirapanjawat T; Gleadow RM; Carere CR; Stott MB; Chiri E; Greening C
    ISME J; 2019 Jul; 13(7):1801-1813. PubMed ID: 30872805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of oxygen on the transformation of ribulose-1,5-diphosphate in the hydrogen bacterium Hydrogenomonas eutropha].
    Vedenina IIa; Romanova AK
    Mikrobiologiia; 1975; 44(6):1116-9. PubMed ID: 814384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex.
    Singer SW; Hirst MB; Ludden PW
    Biochim Biophys Acta; 2006 Dec; 1757(12):1582-91. PubMed ID: 17123462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of mycobacteria on carbon monoxide and methanol.
    Park SW; Hwang EH; Park H; Kim JA; Heo J; Lee KH; Song T; Kim E; Ro YT; Kim SW; Kim YM
    J Bacteriol; 2003 Jan; 185(1):142-7. PubMed ID: 12486050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Nickel enzymes in metabolism of methanogenic bacteria. Lecture held on the occasion of the Otto Warburg medal on September 18, 1984].
    Thauer RK
    Biol Chem Hoppe Seyler; 1985 Feb; 366(2):103-12. PubMed ID: 3921041
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.