These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 6271212)

  • 1. A food dye, erythrosine B, increases membrane permeability to calcium and other ions.
    Colombini M; Wu CY
    Biochim Biophys Acta; 1981 Oct; 648(1):49-54. PubMed ID: 6271212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic effect of Erythrosin B at the frog neuromuscular junction: ion and photon sensitivity.
    Augustine GJ; Levitan H
    J Physiol; 1983 Jan; 334():65-77. PubMed ID: 6306232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodynamic effects of erythrosine on the smooth muscle cells of guinea-pig taenia coli.
    Matthews EK; Mesler DE
    Br J Pharmacol; 1984 Oct; 83(2):555-66. PubMed ID: 6148988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gastrulation in the sea urchin Strongylocentrotus purpuratus is blocked by the fluorescein dye erythrosin B.
    Carroll EJ
    Mol Reprod Dev; 1990 Jan; 25(1):67-71. PubMed ID: 2168189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Food dye, erythrosin B, inhibits ATP-dependent calcium ion transport by brain microsomes.
    Heffron JJ; O'Callaghan AM; Duggan PF
    Biochem Int; 1984 Nov; 9(5):557-62. PubMed ID: 6098274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythrosin and pH gradient induced photo-voltages in bilayer membranes.
    Varnadore WE; Arrieta RT; Duchek JR; Huebner JS
    J Membr Biol; 1982; 65(1-2):147-53. PubMed ID: 6276554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotransmitter release and nerve terminal morphology at the frog neuromuscular junction affected by the dye Erythrosin B.
    Augustine GJ; Levitan H
    J Physiol; 1983 Jan; 334():47-63. PubMed ID: 6134825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeabilization of thymocytes by photon activation of erythrosin.
    Yonuschot G; Matthews EK; Corps AN; Metcalfe JC
    FEBS Lett; 1987 Mar; 213(2):401-5. PubMed ID: 3030820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane channel formation in rhodopsin-containing bilayer membranes.
    Montal M; Darszon A; Trissl HW
    Nature; 1977 May; 267(5608):221-5. PubMed ID: 865613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mastoparan activates apical chloride and potassium conductances, decreases cell volume, and increases permeability of cultured epithelial cell monolayers.
    Winter MC; Carson MR; Sheldon RA; Shasby DM
    Am J Respir Cell Mol Biol; 1992 Jun; 6(6):583-93. PubMed ID: 1317191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of delta-hexachlorocyclohexane toxicity: II. Evidence for Ca2+-dependent K+-selective ionophore activity.
    Buck ED; Pessah IN
    J Pharmacol Exp Ther; 1999 Apr; 289(1):486-93. PubMed ID: 10087041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium as a tool for studying calcium-dependent cation permeability of the human red blood cell membrane.
    Skulskii IA; Glasunov VV; Manninen V
    Gen Physiol Biophys; 1991 Dec; 10(6):549-60. PubMed ID: 1724971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-dependent chloride secretion in rat colon epithelium.
    Cuthbert AW
    J Physiol; 1985 Apr; 361():1-17. PubMed ID: 2985775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin.
    Strickholm A
    Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials.
    Rosenberg RL; Hess P; Tsien RW
    J Gen Physiol; 1988 Jul; 92(1):27-54. PubMed ID: 2844956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane permeability changes during stimulation of isolated salivary glands of Calliphora by 5-hydroxytryptamine.
    Berridge MJ; Lindley BD; Prince WT
    J Physiol; 1975 Jan; 244(3):549-67. PubMed ID: 1133770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of the porin of Haemophilus influenzae type b in planar lipid bilayer membranes.
    Vachon V; Laprade R; Coulton JW
    Biochim Biophys Acta; 1986 Sep; 861(1):74-82. PubMed ID: 3019399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumour cells.
    Hoffmann EK; Simonsen LO; Sjøholm C
    J Physiol; 1979 Nov; 296():61-84. PubMed ID: 529133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the potassium channel from frog skeletal muscle sarcoplasmic reticulum membrane.
    Wang J; Best PM
    J Physiol; 1994 Jun; 477(Pt 2):279-90. PubMed ID: 7932219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-sensitive univalent cation channel formed by lysotriphosphoinositide in bilayer lipid membranes.
    Hayashi F; Sokabe M; Takagi M; Hayashi K; Kishimoto U
    Biochim Biophys Acta; 1978 Jul; 510(2):305-15. PubMed ID: 208609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.