These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6271487)

  • 21. Directional control of site-specific recombination by bacteriophage lambda. Evidence that a binding site for Int protein far from the crossover point is required for integrative but not excisive recombination.
    Winoto A; Chung S; Abraham J; Echols H
    J Mol Biol; 1986 Dec; 192(3):677-80. PubMed ID: 3031315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutations of the phage lambda attachment site alter the directionality of resolution of Holliday structures.
    de Massy B; Dorgai L; Weisberg RA
    EMBO J; 1989 May; 8(5):1591-9. PubMed ID: 2527743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of site-specific recombination as a probe of DNA structure and metabolism in vivo.
    Bliska JB; Cozzarelli NR
    J Mol Biol; 1987 Mar; 194(2):205-18. PubMed ID: 3039150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Swapping DNA strands and sensing homology without branch migration in lambda site-specific recombination.
    Nunes-Düby SE; Azaro MA; Landy A
    Curr Biol; 1995 Feb; 5(2):139-48. PubMed ID: 7743177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptide inhibitors of DNA cleavage by tyrosine recombinases and topoisomerases.
    Klemm M; Cheng C; Cassell G; Shuman S; Segall AM
    J Mol Biol; 2000 Jun; 299(5):1203-16. PubMed ID: 10873446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-specific recombination functions of bacteriophage lambda: DNA sequence of regulatory regions and overlapping structural genes for Int and Xis.
    Hoess RH; Foeller C; Bidwell K; Landy A
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2482-6. PubMed ID: 6446713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Integration of lambda phage (author's transl)].
    Kikuchi A; Kikuchi Y
    Seikagaku; 1979 Dec; 51(12):1322-8. PubMed ID: 233426
    [No Abstract]   [Full Text] [Related]  

  • 28. Half-att site substrates reveal the homology independence and minimal protein requirements for productive synapsis in lambda excisive recombination.
    Nunes-Düby SE; Matsumoto L; Landy A
    Cell; 1989 Oct; 59(1):197-206. PubMed ID: 2529039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions between lambda Int molecules bound to sites in the region of strand exchange are required for efficient Holliday junction resolution.
    Franz B; Landy A
    J Mol Biol; 1990 Oct; 215(4):523-35. PubMed ID: 2146396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gin-mediated DNA inversion: product structure and the mechanism of strand exchange.
    Kanaar R; van de Putte P; Cozzarelli NR
    Proc Natl Acad Sci U S A; 1988 Feb; 85(3):752-6. PubMed ID: 2829201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extent of sequence homology required for bacteriophage lambda site-specific recombination.
    Bauer CE; Gardner JF; Gumport RI
    J Mol Biol; 1985 Jan; 181(2):187-97. PubMed ID: 3157003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Behavior of a cross-linked attachment site: testing the role of branch migration in site-specific recombination.
    Cowart M; Benkovic SJ; Nash HA
    J Mol Biol; 1991 Aug; 220(3):621-9. PubMed ID: 1831237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. recA-mediated recombination of bacteriophage lambda: structure of recombinant and intermediate DNA molecules and their packaging in vitro.
    Ikeda H; Kobayashi I
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 2():1009-21. PubMed ID: 158456
    [No Abstract]   [Full Text] [Related]  

  • 34. Site-specific recombination in bacteriophage lambda: structural features of recombining sites.
    Landy A; Hoess RH; Bidwell K; Ross W
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 2():1089-97. PubMed ID: 158462
    [No Abstract]   [Full Text] [Related]  

  • 35. Quantitative analysis of the contributions of enzyme and DNA to the structure of lambda integrative recombinants.
    Spengler SJ; Stasiak A; Stasiak AZ; Cozzarelli NR
    Cold Spring Harb Symp Quant Biol; 1984; 49():745-9. PubMed ID: 6099256
    [No Abstract]   [Full Text] [Related]  

  • 36. Strand invasion promoted by recombination protein beta of coliphage lambda.
    Rybalchenko N; Golub EI; Bi B; Radding CM
    Proc Natl Acad Sci U S A; 2004 Dec; 101(49):17056-60. PubMed ID: 15574500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early steps in genetic recombination induced by damaged DNA: cutting in trans in E coli cells and in protein extracts.
    Howard-Flanders P; Cassuto E; Ross P
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 2():1073-82. PubMed ID: 158461
    [No Abstract]   [Full Text] [Related]  

  • 38. Bacteriophage T4 DNA topoisomerase mediates illegitimate recombination in vitro.
    Ikeda H
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):922-6. PubMed ID: 3006033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heteroduplex substrates for bacteriophage lambda site-specific recombination: cleavage and strand transfer products.
    Nash HA; Robertson CA
    EMBO J; 1989 Nov; 8(11):3523-33. PubMed ID: 2555168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role for DNA homology in site-specific recombination. The isolation and characterization of a site affinity mutant of coliphage lambda.
    Weisberg RA; Enquist LW; Foeller C; Landy A
    J Mol Biol; 1983 Oct; 170(2):319-42. PubMed ID: 6226804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.