BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6271642)

  • 1. Variants of a cloned synthetic lactose operator. II. Chloramphenicol-resistant revertants retaining a lactose operator in the CAT gene of plasmid pBR325.
    Betz JL; Sadler JR
    Gene; 1981 Nov; 15(2-3):187-200. PubMed ID: 6271642
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effectiveness of expression of the chloramphenicol acetyltransferase gene controlled by foreign regulatory regions in Escherichia coli cells. I. Construction of vectors for the cloning of transcription regulatory elements].
    Mashko SV; Lebedeva MI; Podkovyrov SM; Kashlev MV; Trukhan ME
    Mol Biol (Mosk); 1985; 19(5):1194-205. PubMed ID: 3001506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloramphenicol-inducible gene expression in Bacillus subtilis is independent of the chloramphenicol acetyltransferase structural gene and its promoter.
    Mongkolsuk S; Ambulos NP; Lovett PS
    J Bacteriol; 1984 Oct; 160(1):1-8. PubMed ID: 6090404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Subjection of tetracycline resistance genes to cat promotor gene in plasmid pBR325].
    Kozlovskaia TM; Dishler AV; Bychko VV; Pumpen PP; Gren EIa
    Mol Biol (Mosk); 1981; 15(5):1158-68. PubMed ID: 7029244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of the natural lactose operator.
    Sadler JR; Tecklenburg M
    Gene; 1981; 13(1):13-23. PubMed ID: 6263752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmid vectors for the selection of promoters.
    Brosius J
    Gene; 1984 Feb; 27(2):151-60. PubMed ID: 6327464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and characterization of the chloramphenicol-resistance gene cartridge: a new approach to the transcriptional mapping of extrachromosomal elements.
    Close TJ; Rodriguez RL
    Gene; 1982 Dec; 20(2):305-16. PubMed ID: 6299895
    [No Abstract]   [Full Text] [Related]  

  • 8. Cloning of a chloramphenicol acetyltransferase gene of Streptomyces acrimycini and its expression in Streptomyces and Escherichia coli.
    Gil JA; Kieser HM; Hopwood DA
    Gene; 1985; 38(1-3):1-8. PubMed ID: 3905512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of alterations in the translation control region on bacterial gene expression: use of cat gene constructs transcribed from the lac promoter as a model system.
    Schottel JL; Sninsky JJ; Cohen SN
    Gene; 1984 May; 28(2):177-93. PubMed ID: 6376284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence and expression characteristics of a shuttle chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli.
    Hadfield C; Cashmore AM; Meacock PA
    Gene; 1987; 52(1):59-70. PubMed ID: 3036659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and expression of a chloramphenicol acetyltransferase gene in cytosine-substituted T4 bacteriophage.
    Noguchi T; Takahashi H; Saito H
    Gene; 1986; 44(1):133-8. PubMed ID: 3021583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of human dihydrofolate reductase cDNA and its induction by chloramphenicol in Bacillus subtilis.
    Morandi C; Perego M; Mazza PG
    Gene; 1984 Oct; 30(1-3):69-77. PubMed ID: 6096225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis.
    Kreft J; Burger KJ; Goebel W
    Mol Gen Genet; 1983; 190(3):384-9. PubMed ID: 6410152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Expression of the chloramphenicol acetyltransferase gene is under control of various promoters of E. coli and phage lambda].
    Mashko SV; Podkovyrov SM; Trukhan ME; Gorovits RL; Lebedeva MI
    Mol Gen Mikrobiol Virusol; 1986 Apr; (4):9-16. PubMed ID: 2948120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloramphenicol resistance that does not involve chloramphenicol acetyltransferase encoded by plasmids from gram-negative bacteria.
    Gaffney DF; Cundliffe E; Foster TJ
    J Gen Microbiol; 1981 Jul; 125(1):113-21. PubMed ID: 7038031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations not altering the symmetrical sequences in the trp operator yield a constitutive phenotype.
    Grosfeld H; Cohen S; Velan B; Shalita Z; Shafferman A
    Mol Gen Genet; 1984; 195(1-2):358-60. PubMed ID: 6092859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational block to expression of the Escherichia coli Tn9-derived chloramphenicol-resistance gene in Bacillus subtilis.
    Goldfarb DS; Rodriguez RL; Doi RH
    Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5886-90. PubMed ID: 6310552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organisation and control of the Escherichia coli uvrC gene.
    Forster JW; Strike P
    Gene; 1985; 35(1-2):71-82. PubMed ID: 2993106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and characterization of a novel two-plasmid system for accomplishing temperature-regulated, amplified expression of cloned adventitious genes in Escherichia coli.
    Sninsky JJ; Uhlin BE; Gustafsson P; Cohen SN
    Gene; 1981 Dec; 16(1-3):275-86. PubMed ID: 7044891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effectiveness of expression of the chloramphenicol acetyltransferase gene controlled by foreign regulator regions in Escherichia coli cells. II. Molecular cloning of promoters].
    Mashko SV; Podkovyrov SM; Trukhan ME; Lebedeva MI; Lapidus AL
    Mol Biol (Mosk); 1987; 21(1):73-86. PubMed ID: 2437441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.