These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 6271642)
1. Variants of a cloned synthetic lactose operator. II. Chloramphenicol-resistant revertants retaining a lactose operator in the CAT gene of plasmid pBR325. Betz JL; Sadler JR Gene; 1981 Nov; 15(2-3):187-200. PubMed ID: 6271642 [No Abstract] [Full Text] [Related]
2. [Effectiveness of expression of the chloramphenicol acetyltransferase gene controlled by foreign regulatory regions in Escherichia coli cells. I. Construction of vectors for the cloning of transcription regulatory elements]. Mashko SV; Lebedeva MI; Podkovyrov SM; Kashlev MV; Trukhan ME Mol Biol (Mosk); 1985; 19(5):1194-205. PubMed ID: 3001506 [TBL] [Abstract][Full Text] [Related]
3. Chloramphenicol-inducible gene expression in Bacillus subtilis is independent of the chloramphenicol acetyltransferase structural gene and its promoter. Mongkolsuk S; Ambulos NP; Lovett PS J Bacteriol; 1984 Oct; 160(1):1-8. PubMed ID: 6090404 [TBL] [Abstract][Full Text] [Related]
5. Cloning and characterization of the natural lactose operator. Sadler JR; Tecklenburg M Gene; 1981; 13(1):13-23. PubMed ID: 6263752 [TBL] [Abstract][Full Text] [Related]
6. Plasmid vectors for the selection of promoters. Brosius J Gene; 1984 Feb; 27(2):151-60. PubMed ID: 6327464 [TBL] [Abstract][Full Text] [Related]
7. Construction and characterization of the chloramphenicol-resistance gene cartridge: a new approach to the transcriptional mapping of extrachromosomal elements. Close TJ; Rodriguez RL Gene; 1982 Dec; 20(2):305-16. PubMed ID: 6299895 [No Abstract] [Full Text] [Related]
8. Cloning of a chloramphenicol acetyltransferase gene of Streptomyces acrimycini and its expression in Streptomyces and Escherichia coli. Gil JA; Kieser HM; Hopwood DA Gene; 1985; 38(1-3):1-8. PubMed ID: 3905512 [TBL] [Abstract][Full Text] [Related]
9. Effects of alterations in the translation control region on bacterial gene expression: use of cat gene constructs transcribed from the lac promoter as a model system. Schottel JL; Sninsky JJ; Cohen SN Gene; 1984 May; 28(2):177-93. PubMed ID: 6376284 [TBL] [Abstract][Full Text] [Related]
10. Sequence and expression characteristics of a shuttle chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli. Hadfield C; Cashmore AM; Meacock PA Gene; 1987; 52(1):59-70. PubMed ID: 3036659 [TBL] [Abstract][Full Text] [Related]
11. Cloning and expression of a chloramphenicol acetyltransferase gene in cytosine-substituted T4 bacteriophage. Noguchi T; Takahashi H; Saito H Gene; 1986; 44(1):133-8. PubMed ID: 3021583 [TBL] [Abstract][Full Text] [Related]
12. Expression of human dihydrofolate reductase cDNA and its induction by chloramphenicol in Bacillus subtilis. Morandi C; Perego M; Mazza PG Gene; 1984 Oct; 30(1-3):69-77. PubMed ID: 6096225 [TBL] [Abstract][Full Text] [Related]
13. Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis. Kreft J; Burger KJ; Goebel W Mol Gen Genet; 1983; 190(3):384-9. PubMed ID: 6410152 [TBL] [Abstract][Full Text] [Related]
14. [Expression of the chloramphenicol acetyltransferase gene is under control of various promoters of E. coli and phage lambda]. Mashko SV; Podkovyrov SM; Trukhan ME; Gorovits RL; Lebedeva MI Mol Gen Mikrobiol Virusol; 1986 Apr; (4):9-16. PubMed ID: 2948120 [TBL] [Abstract][Full Text] [Related]
15. Chloramphenicol resistance that does not involve chloramphenicol acetyltransferase encoded by plasmids from gram-negative bacteria. Gaffney DF; Cundliffe E; Foster TJ J Gen Microbiol; 1981 Jul; 125(1):113-21. PubMed ID: 7038031 [TBL] [Abstract][Full Text] [Related]
16. Mutations not altering the symmetrical sequences in the trp operator yield a constitutive phenotype. Grosfeld H; Cohen S; Velan B; Shalita Z; Shafferman A Mol Gen Genet; 1984; 195(1-2):358-60. PubMed ID: 6092859 [TBL] [Abstract][Full Text] [Related]
17. Translational block to expression of the Escherichia coli Tn9-derived chloramphenicol-resistance gene in Bacillus subtilis. Goldfarb DS; Rodriguez RL; Doi RH Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5886-90. PubMed ID: 6310552 [TBL] [Abstract][Full Text] [Related]
18. Organisation and control of the Escherichia coli uvrC gene. Forster JW; Strike P Gene; 1985; 35(1-2):71-82. PubMed ID: 2993106 [TBL] [Abstract][Full Text] [Related]
19. Construction and characterization of a novel two-plasmid system for accomplishing temperature-regulated, amplified expression of cloned adventitious genes in Escherichia coli. Sninsky JJ; Uhlin BE; Gustafsson P; Cohen SN Gene; 1981 Dec; 16(1-3):275-86. PubMed ID: 7044891 [TBL] [Abstract][Full Text] [Related]
20. [Effectiveness of expression of the chloramphenicol acetyltransferase gene controlled by foreign regulator regions in Escherichia coli cells. II. Molecular cloning of promoters]. Mashko SV; Podkovyrov SM; Trukhan ME; Lebedeva MI; Lapidus AL Mol Biol (Mosk); 1987; 21(1):73-86. PubMed ID: 2437441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]