These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 6272637)

  • 21. Studies of mitochondrial energy systems during embryogenesis in the rat.
    Mackler B; Grace R; Haynes B; Bargman GJ; Shepard TH
    Arch Biochem Biophys; 1973 Oct; 158(2):662-6. PubMed ID: 4150124
    [No Abstract]   [Full Text] [Related]  

  • 22. Action mechanism of phenothiazine derivatives on mitochondrial respiration.
    Matsubara T; Hagihara B
    J Biochem; 1968 Feb; 63(2):156-64. PubMed ID: 4299374
    [No Abstract]   [Full Text] [Related]  

  • 23. Differentiation of two states of F1-ATPase by nucleotide analogs.
    Schäfer G
    FEBS Lett; 1982 Mar; 139(2):271-5. PubMed ID: 6210575
    [No Abstract]   [Full Text] [Related]  

  • 24. Steady-state kinetics of the overall oxidative phosphorylation reaction in heart mitochondria. Evidence for linkage of the energy-yielding and energy-consuming steps by freely diffusible intermediates and for an allosteric mechanism of respiratory control at coupling site 2.
    Stoner CD
    J Bioenerg Biomembr; 1985 Apr; 17(2):85-108. PubMed ID: 2860103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical gradient induced displacement of the natural ATPase inhibitor protein from mitochondrial ATPase as directed by antibodies against the inhibitor protein.
    Dreyfus G; Gómez-Puyou A; Iuena de Gómez-Puyou M
    Biochem Biophys Res Commun; 1981 May; 100(1):400-6. PubMed ID: 6167259
    [No Abstract]   [Full Text] [Related]  

  • 26. Oxidative phosphorylation at the fin de siècle.
    Saraste M
    Science; 1999 Mar; 283(5407):1488-93. PubMed ID: 10066163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered expression of mitochondrial electron transport chain proteins and improved myocardial energetic state during late ischemic preconditioning.
    Cabrera JA; Ziemba EA; Colbert R; Anderson LB; Sluiter W; Duncker DJ; Butterick TA; Sikora J; Ward HB; Kelly RF; McFalls EO
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H1974-82. PubMed ID: 22389388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mitochondrial electron transport and oxidative phosphorylation system.
    Hatefi Y
    Annu Rev Biochem; 1985; 54():1015-69. PubMed ID: 2862839
    [No Abstract]   [Full Text] [Related]  

  • 29. Native electrophoresis for isolation of mitochondrial oxidative phosphorylation protein complexes.
    Schägger H
    Methods Enzymol; 1995; 260():190-202. PubMed ID: 8592444
    [No Abstract]   [Full Text] [Related]  

  • 30. The regulation of OXPHOS by extramitochondrial calcium.
    Gellerich FN; Gizatullina Z; Trumbeckaite S; Nguyen HP; Pallas T; Arandarcikaite O; Vielhaber S; Seppet E; Striggow F
    Biochim Biophys Acta; 2010; 1797(6-7):1018-27. PubMed ID: 20144582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical functioning of mitochondria in normal and denervated mammalian skeletal muscle.
    Joffe M; Savage N; Isaacs H
    Muscle Nerve; 1981; 4(6):514-9. PubMed ID: 6273720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slipping pumps or proton leaks in oxidative phosphorylation. The local anesthetic bupivacaine causes slip in cytochrome c oxidase of mitochondria.
    van Dam K; Shinohara Y; Unami A; Yoshida K; Terada H
    FEBS Lett; 1990 Dec; 277(1-2):131-3. PubMed ID: 2176610
    [No Abstract]   [Full Text] [Related]  

  • 33. Dimensional probes of the enzyme binding sites of adenine nucleotides. Interaction of lin-benzoadenosine 5'-di- and triphosphate with mitochondrial ATP synthetase, purified ATPase, and the adenine nucleotide carrier.
    Kauffman RF; Lardy HA; Barrio JR; Bario MC; Leonard NJ
    Biochemistry; 1978 Sep; 17(18):3686-92. PubMed ID: 212101
    [No Abstract]   [Full Text] [Related]  

  • 34. Effects of 6,6'-dithiodinicotinic acid, a thiol reagent on several mitochondrial functions: coupling mechanism, ATPase and anion transport.
    Abou-Khalil S; Sabadie-Pialoux N; Gautheron D
    Biochem Pharmacol; 1975 Jan; 24(1):49-56. PubMed ID: 123744
    [No Abstract]   [Full Text] [Related]  

  • 35. Energy transfer in mitochondrial synthesis of ATP; a survey.
    Klingenberg M
    Ciba Found Symp; 1975; (31):23-40. PubMed ID: 238807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial energy metabolism impairment and liver dysfunction following chronic exposure to dichlorvos.
    Binukumar BK; Bal A; Kandimalla R; Sunkaria A; Gill KD
    Toxicology; 2010 Apr; 270(2-3):77-84. PubMed ID: 20132858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of morphine in vitro on the oxidative phosphorylation in rat liver mitochondria].
    Gegenava GP; Chistiakov VV
    Biull Eksp Biol Med; 1975 Oct; 80(10):77-9. PubMed ID: 179644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane-Anchored Cyclic Peptides as Effectors of Mitochondrial Oxidative Phosphorylation.
    Shirey K; Stover KR; Cleary J; Hoang N; Hosler J
    Biochemistry; 2016 Apr; 55(14):2100-11. PubMed ID: 26985698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charge transfer between water and octane phases by soluble mitochondrial ATPase (F1), bacteriorhodopsin and respiratory chain enzymes.
    Boguslavsky LI; Kondrashin AA; Kozlov IA; Metelsky ST; Skulachev VP; Volkov AG
    FEBS Lett; 1975 Feb; 50(2):223-6. PubMed ID: 163209
    [No Abstract]   [Full Text] [Related]  

  • 40. Perspectives and limitations of resolutions-reconstitution experiments.
    Racker E
    J Supramol Struct; 1977; 6(2):215-28. PubMed ID: 198614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.