These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 627268)

  • 1. Visual system development in the duck embryo.
    Heaton MB; Munson JB
    Exp Neurol; 1978 Mar; 59(1):53-61. PubMed ID: 627268
    [No Abstract]   [Full Text] [Related]  

  • 2. The development of the isthmo-optic nucleus in the duck (Anasplatyrhynchos) I. Changes in cell number and cell size during normal development.
    Sohal GS; Narayanan CH
    Brain Res; 1974 Sep; 77(2):243-55. PubMed ID: 4854714
    [No Abstract]   [Full Text] [Related]  

  • 3. Morphogenetic forces in the development of the avian retina of possible significance for the polarity of central visual projections [proceedings].
    Horder TJ; Mashkas A; Webb JN
    J Physiol; 1979 Jun; 291():12P-13P. PubMed ID: 480199
    [No Abstract]   [Full Text] [Related]  

  • 4. Evidence for a rapid phase of axoplasmic transport at early stages in the development of the visual system of the chick and frog.
    Crossland WJ; Currie JR; Rogers LA; Cowan WM
    Brain Res; 1974 Oct; 78(3):483-9. PubMed ID: 4138243
    [No Abstract]   [Full Text] [Related]  

  • 5. Morphogenesis and physiogenesis of the retino-tectal connection in the chicken. II. The retino-tectal synapses.
    Rager G
    Proc R Soc Lond B Biol Sci; 1976 Feb; 192(1108):353-70. PubMed ID: 3795
    [No Abstract]   [Full Text] [Related]  

  • 6. Radioautographic evidence for protein transport along the optic pathway of early chick embryos.
    Marchisio PC; Sjöstrand J
    J Neurocytol; 1972 Jul; 1(1):101-8. PubMed ID: 4129452
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on the development of the avian visual system.
    Cowan WM
    UCLA Forum Med Sci; 1971; 14():177-222. PubMed ID: 4942374
    [No Abstract]   [Full Text] [Related]  

  • 8. Delayed innervation of the optic tectum during development in Xenopus laevis.
    Feldman JD; Gaze RM; Keating MJ
    Exp Brain Res; 1971; 14(1):16-23. PubMed ID: 5157533
    [No Abstract]   [Full Text] [Related]  

  • 9. Structural analysis of fiber organization during development.
    Rager G
    Prog Brain Res; 1983; 58():313-9. PubMed ID: 6195691
    [No Abstract]   [Full Text] [Related]  

  • 10. Specification of retinal central connections in Rana pipiens before the appearance of the first post-mitotic ganglion cells.
    Sharma SC; Hollyfield JG
    J Comp Neurol; 1974 Jun; 155(4):395-407. PubMed ID: 4546572
    [No Abstract]   [Full Text] [Related]  

  • 11. Polarity of structure and of ordered nerve connections in the developing amphibian brain.
    Chung SH; Cooke J
    Nature; 1975 Nov; 258(5531):126-32. PubMed ID: 1186890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of NADPH-diaphorase and nitric oxide synthase in the visual system of the cichlid fish, Tilapia mariae.
    Villani L; Minelli D; Giuliani A; Quaglia A
    Brain Res Bull; 2001 Mar; 54(5):569-74. PubMed ID: 11397550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey.
    Rakic P
    Nature; 1976 Jun; 261(5560):467-71. PubMed ID: 819835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of pattern duplication in the retinotectal system of Xenopus. Suppression of duplication by eye-fragment interactions.
    Ide CF; Kosofsky BE; Hunt RK
    Dev Biol; 1979 Apr; 69(2):337-60. PubMed ID: 437346
    [No Abstract]   [Full Text] [Related]  

  • 15. Control of pattern duplication in the retinotectal system of Xenopus. Induction of duplication in eye fragments by secondary cuts.
    Ling RT; Ide CF; Hunt RK
    Dev Biol; 1979 Apr; 69(2):361-74. PubMed ID: 437347
    [No Abstract]   [Full Text] [Related]  

  • 16. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts.
    Baudet ML; Rattray D; Harvey S
    Neuroscience; 2007 Aug; 148(1):151-63. PubMed ID: 17618059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth.
    Perez RG; Halfter W
    Dev Biol; 1993 Mar; 156(1):278-92. PubMed ID: 7680630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of optic fibre growth following eye rotation in Xenopus laevis embryos.
    Grant P; Rubin E
    Nature; 1980 Oct; 287(5785):845-8. PubMed ID: 7432498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of deafferentation on the development of the isthmo-optic nucleus in the duck (Anas platyrhynchos).
    Sohal GS
    Exp Neurol; 1976 Jan; 50(1):161-73. PubMed ID: 1248537
    [No Abstract]   [Full Text] [Related]  

  • 20. The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders.
    Harris WA
    J Comp Neurol; 1980 Nov; 194(2):303-17. PubMed ID: 7440803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.