These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6272719)

  • 1. Evidence that the lack of high catalytic activity of thiolsubtilisin towards specific substrates may be due to an inappropriately located proton-distribution system. Demonstration of highly nucleophilic character of the thiol group of thiolsubtilisin in the catalytically relevant ionization state of the active centre by use of a two-protonic-state reactivity probe.
    Brocklehurst K; Malthouse JP
    Biochem J; 1981 Mar; 193(3):819-23. PubMed ID: 6272719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the papain active centre by using two-protonic-state electrophiles as reactivity probes. Evidence for nucleophilic reactivity in the un-interrupted cysteine-25-histidine-159 interactive system.
    Shipton M; Brochlehurst K
    Biochem J; 1978 May; 171(2):385-401. PubMed ID: 26335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of cathepsins B and H by covalent chromatography and characterization of their catalytic sites by reaction with a thiol-specific two-protonic-state reactivity probe. Kinetic study of cathepsins B and H extending into alkaline media and a rapid spectroscopic titration of cathepsin H at pH 3-4.
    Willenbrock F; Brocklehurst K
    Biochem J; 1985 Apr; 227(2):511-9. PubMed ID: 4004778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural structural variation in enzymes as a tool in the study of mechanism exemplified by a comparison of the catalytic-site structure and characteristics of cathepsin B and papain. pH-dependent kinetics of the reactions of cathepsin B from bovine spleen and from rat liver with a thiol-specific two-protonic-state probe (2,2'-dipyridyl disulphide) and with a specific synthetic substrate (N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide).
    Willenbrock F; Brocklehurst K
    Biochem J; 1984 Sep; 222(3):805-14. PubMed ID: 6534384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the electrostatic perturbation of a catalytic site (Cys)-S-/(His)-Im+H ion-pair in one type of serine proteinase architecture by kinetic and computational studies on chemically mutated subtilisin variants.
    Plou FJ; Kowlessur D; Malthouse JP; Mellor GW; Hartshorn MJ; Pinitglang S; Patel H; Topham CM; Thomas EW; Verma C; Brocklehurst K
    J Mol Biol; 1996 Apr; 257(5):1088-111. PubMed ID: 8632470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that binding to the s2-subsite of papain may be coupled with catalytically relevant structural change involving the cysteine-25-histidine-159 diad. Kinetics of the reaction of papain with a two-protonic-state reactivity probe containing a hydrophobic side chain.
    Brocklehurst K; Malthouse JP; Shipton M
    Biochem J; 1979 Nov; 183(2):223-31. PubMed ID: 43129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of papaya peptidase A as a cysteine proteinase of Carica papaya L. with active-centre properties that differ from those of papain by using 2,2'-dipyridyl disulphide and 4-chloro-7-nitrobenzofurazan as reactivity probes. Use of two-protonic-state electrophiles in the identification of catalytic-site thiol groups.
    Baines BS; Brocklehurst K
    Biochem J; 1982 Jul; 205(1):205-11. PubMed ID: 6751321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-derived two-protonic-state electrophiles as sensitive kinetic specificity probes for cysteine proteinases. Activation of 2-pyridyl disulphides by hydrogen-bonding.
    Brocklehurst K; Kowlessur D; O'Driscoll M; Patel G; Quenby S; Salih E; Templeton W; Thomas EW; Willenbrock F
    Biochem J; 1987 May; 244(1):173-81. PubMed ID: 3663111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of L-ergothioneine and some other aminothiones with2,2'-and 4,4'-dipyridyl disulphides and of L-ergothioneine with iodoacetamide. 2-Mercaptoimidazoles, 2- and 4-thiopyridones, thiourea and thioacetamide as highly reactive neutral sulphur nucleophils.
    Carlsson J; Kierstan MP; Brocklehurst K
    Biochem J; 1974 Apr; 139(1):221-35. PubMed ID: 4463944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chymopapain A. Purification and investigation by covalent chromatography and characterization by two-protonic-state reactivity-probe kinetics, steady-state kinetics and resonance Raman spectroscopy of some dithioacyl derivatives.
    Baines BS; Brocklehurst K; Carey PR; Jarvis M; Salih E; Storer AC
    Biochem J; 1986 Jan; 233(1):119-29. PubMed ID: 3513753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivities of neutral and cationic forms of 2,2'-dipyridyl disulphide towards thiolate anions. Detection of differences between the active centres of actinidin, papain and ficin by a three-protonic-state reactivity probe.
    Brocklehurst K; Stuchbury T; Malthouse JP
    Biochem J; 1979 Nov; 183(2):233-8. PubMed ID: 43130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the chemical and catalytic characteristics of two crystallographically 'identical' enzyme catalytic sites. Characterization of actinidin and papain by a combination of pH-dependent substrate catalysis kinetics and reactivity probe studies targeted on the catalytic-site thiol group and its immediate microenvironment.
    Salih E; Malthouse JP; Kowlessur D; Jarvis M; O'Driscoll M; Brocklehurst K
    Biochem J; 1987 Oct; 247(1):181-93. PubMed ID: 2825655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe.
    Brocklehurst K; Kowlessur D; Patel G; Templeton W; Quigley K; Thomas EW; Wharton CW; Willenbrock F; Szawelski RJ
    Biochem J; 1988 Mar; 250(3):761-72. PubMed ID: 2839145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of subtilisin and thiolsubtilisin.
    Philipp M; Bender ML
    Mol Cell Biochem; 1983; 51(1):5-32. PubMed ID: 6343835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the kinetic specificity of subtilisin and thiolsubtilisin toward n-alkyl p-nitrophenyl esters.
    Philipp M; Tsai IH; Bender ML
    Biochemistry; 1979 Aug; 18(17):3769-73. PubMed ID: 38838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactions of papain and of low-molecular-weight thiols with some aromatic disulphides. 2,2'-Dipyridyl disulphide as a convenient active-site titrant for papain even in the presence of other thiols.
    Brocklehurst K; Little G
    Biochem J; 1973 May; 133(1):67-80. PubMed ID: 4721623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic-site characteristics of the porcine calpain II 80 kDa/18 kDa heterodimer revealed by selective reaction of its essential thiol group with two-hydronic-state time-dependent inhibitors: evidence for a catalytic site Cys/His interactive system and an ionizing modulatory group.
    Mellor GW; Sreedharan SK; Kowlessur D; Thomas EW; Brocklehurst K
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):75-83. PubMed ID: 8439300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of fully active ficin from Ficus glabrata by covalent chromatography and characterization of its active centre by using 2,2'-depyridyl disulphide as a reactivity probe.
    Malthouse JP; Brocklehurst K
    Biochem J; 1976 Nov; 159(2):221-34. PubMed ID: 11777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a two-state transition in papain that may have no close analogue in ficin. Differences in the disposition of cationic sites and hydrophobic binding areas in the active centres of papain and ficin.
    Brocklehurst K; Malthouse JP
    Biochem J; 1980 Dec; 191(3):707-18. PubMed ID: 7025834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A convenient method of preparation of high-activity urease from Canavalia ensiformis by covalent chromatography and an investigation of its thiol groups with 2,2'-dipyridyl disulphide as a thiol titrant and reactivity probe.
    Norris R; Brocklehurst K
    Biochem J; 1976 Nov; 159(2):245-57. PubMed ID: 11779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.