BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 6272833)

  • 21. Hydroxyl-radical production and ethanol oxidation by liver microsomes isolated from ethanol-treated rats.
    Ekström G; Cronholm T; Ingelman-Sundberg M
    Biochem J; 1986 Feb; 233(3):755-61. PubMed ID: 3085654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Xanthine oxidase induced depolymerization of hyaluronic acid in the presence of ferritin.
    Carlin G; Djursäter R
    FEBS Lett; 1984 Nov; 177(1):27-30. PubMed ID: 6094241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase.
    Dicker E; Cederbaum AI
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1282-90. PubMed ID: 7690400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interaction of hydroxyl radicals with dimethylsulfoxide produces formaldehyde.
    Klein SM; Cohen G; Cederbaum AI
    FEBS Lett; 1980 Jul; 116(2):220-2. PubMed ID: 6893306
    [No Abstract]   [Full Text] [Related]  

  • 25. Quantitative effects of iron chelators on hydroxyl radical production by the superoxide-driven fenton reaction.
    Smith JB; Cusumano JC; Babbs CF
    Free Radic Res Commun; 1990; 8(2):101-6. PubMed ID: 2156748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals.
    Halliwell B; Gutteridge JM
    FEBS Lett; 1981 Jun; 128(2):347-52. PubMed ID: 6266877
    [No Abstract]   [Full Text] [Related]  

  • 27. Hydroxyl radicals do not crosslink a DNA-lysozyme complex.
    Werbin H; Cheng CJ
    Carcinogenesis; 1985 Dec; 6(12):1689-91. PubMed ID: 2998638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spin-trapping of superoxide ion by a water-soluble, nitroso-aromatic spin-trap.
    Ozawa T; Hanaki A
    Biochem Biophys Res Commun; 1986 Apr; 136(2):657-64. PubMed ID: 3010990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Participation of iron in OH-radical formation in a system generating a superoxide anion-radical].
    Osipov AN; Savov VM; Zubarev VE; Azizova OA; Vladimirov IuA
    Biofizika; 1981; 26(2):193-7. PubMed ID: 6266504
    [No Abstract]   [Full Text] [Related]  

  • 30. Possible role of hydroxyl radicals in the metabolism of succinonitrile.
    Hayes EP; Freeman JJ; Kossor DC
    Biochem Pharmacol; 1985 Nov; 34(22):4081-4. PubMed ID: 2998398
    [No Abstract]   [Full Text] [Related]  

  • 31. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin.
    Bannister JV; Bannister WH; Hill HA; Thornalley PJ
    Biochim Biophys Acta; 1982 Mar; 715(1):116-20. PubMed ID: 6280774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An investigation into the role of hydroxyl radical in xanthine oxidase-dependent lipid peroxidation.
    Tien M; Svingen BA; Aust SD
    Arch Biochem Biophys; 1982 Jun; 216(1):142-51. PubMed ID: 6285826
    [No Abstract]   [Full Text] [Related]  

  • 33. The effect of chronic alcohol feeding on lipid peroxidation in microsomes: lack of relationship to hydroxyl radical generation.
    Shaw S; Jayatilleke E; Lieber CS
    Biochem Biophys Res Commun; 1984 Jan; 118(1):233-8. PubMed ID: 6320823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inactivation of alpha 1-antiproteinase by hydroxyl radicals. The effect of uric acid.
    Aruoma OI; Halliwell B
    FEBS Lett; 1989 Feb; 244(1):76-80. PubMed ID: 2538353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydroxyl radical attack on dopamine.
    Slivka A; Cohen G
    J Biol Chem; 1985 Dec; 260(29):15466-72. PubMed ID: 2999117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iodination catalyzed by the xanthine oxidase system: role of hydroxyl radicals.
    Klebanoff SJ
    Biochemistry; 1982 Aug; 21(17):4110-6. PubMed ID: 6289871
    [No Abstract]   [Full Text] [Related]  

  • 37. Reactivities of diphenylfuran (a singlet oxygen trap) with singlet oxygen and hydroxyl radical in aqueous systems.
    Takayama K; Noguchi T; Nakano M
    Biochem Biophys Res Commun; 1977 Apr; 75(4):1052-8. PubMed ID: 405009
    [No Abstract]   [Full Text] [Related]  

  • 38. Scatchard analysis of methane sulfinic acid production from dimethyl sulfoxide: a method to quantify hydroxyl radical formation in physiologic systems.
    Babbs CF; Griffin DW
    Free Radic Biol Med; 1989; 6(5):493-503. PubMed ID: 2744582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical evidence for production of hydroxyl radicals during microsomal electron transfer.
    Cohen G; Cederbaum AI
    Science; 1979 Apr; 204(4388):66-8. PubMed ID: 432627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for hydroxyl free radical formation during paraquat but not for nifurtimox liver microsomal biotransformation. A dimethyl-sulfoxide scavenging study.
    Castro GD; Lopez A; Castro JA
    Arch Toxicol; 1988; 62(5):355-8. PubMed ID: 3242445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.