BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 6272850)

  • 1. Effects of temperature, lipid modification and pH on the mobility of the major proteins of the receptor-rich membranes from Torpedo marmarata.
    Rousselet A; Cartaud J; Devaux PF
    Biochim Biophys Acta; 1981 Nov; 648(2):169-85. PubMed ID: 6272850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata.
    Marsh D; Watts A; Barrantes FJ
    Biochim Biophys Acta; 1981 Jul; 645(1):97-101. PubMed ID: 6266478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rotational diffusion of the acetylcholine receptor in Torpeda marmorata membrane fragments studied with a spin-labelled alpha-toxin: importance of the 43 000 protein(s).
    Rousselet A; Cartaud J; Devaux PF; Changeux JP
    EMBO J; 1982; 1(4):439-45. PubMed ID: 6329680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Raman spectroscopic investigation of the lipid state in acetylcholine receptor-rich membranes from Torpedo marmorata.
    Aslanian D; Négrerie M
    EMBO J; 1985 Apr; 4(4):965-9. PubMed ID: 4018037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturation transfer electron paramagnetic resonance on membrane bound proteins. II-Absence of rotational diffusion of the cholinergic receptor protein in Torpedo marmorata membrane fragments.
    Rousselet A; Devaux PF
    Biochem Biophys Res Commun; 1977 Sep; 78(1):448-54. PubMed ID: 199171
    [No Abstract]   [Full Text] [Related]  

  • 6. Reconstitution of a functional acetylcholine receptor. Polypeptide chains, ultrastructure, and binding sites for acetylcholine and local anesthetics.
    Sobel A; Heidmann T; Cartaud J; Changeux JP
    Eur J Biochem; 1980 Sep; 110(1):13-33. PubMed ID: 7439153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes from Torpedo marmorata electric organ.
    Cartaud J; Sobel A; Rousselet A; Devaux PF; Changeux JP
    J Cell Biol; 1981 Aug; 90(2):418-26. PubMed ID: 7287814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata.
    Marsh D; Barrantes FJ
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4329-33. PubMed ID: 212745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid-protein interactions and effect of local anesthetics in acetylcholine receptor-rich membranes from Torpedo marmorata electric organ.
    Mantipragada SB; Horváth LI; Arias HR; Schwarzmann G; Sandhoff K; Barrantes FJ; Marsh D
    Biochemistry; 2003 Aug; 42(30):9167-75. PubMed ID: 12885251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluidity of the lipids next to the acetylcholine receptor protein of torpedo membrane fragments. Use of amphiphilic reversible spin-labels.
    Bienvenüe A; Rousselet A; Kato G; Devaux PF
    Biochemistry; 1977 Mar; 16(5):841-8. PubMed ID: 191058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligomeric forms of the membrane-bound acetylcholine receptor disclosed upon extraction of the Mr 43,000 nonreceptor peptide.
    Barrantes FJ
    J Cell Biol; 1982 Jan; 92(1):60-8. PubMed ID: 6173390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membranes rich in acetylcholine receptor: characterization and reconstitution to excitable membranes from exogenous lipids.
    Schiebler W; Hucho F
    Eur J Biochem; 1978 Apr; 85(1):55-63. PubMed ID: 639824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor.
    Ellena JF; Blazing MA; McNamee MG
    Biochemistry; 1983 Nov; 22(24):5523-35. PubMed ID: 6317021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel spin-label for study of membrane protein rotational diffusion using saturation transfer electron spin resonance. Application to selectively labelled class I and class II-SH groups of the shark rectal gland Na+/K+-ATPase.
    Esmann M; Hankovszky HO; Hideg K; Marsh D
    Biochim Biophys Acta; 1989 Jan; 978(2):209-15. PubMed ID: 2536556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Importance of protein-protein interactions for the structural integrity of membrane framents from Torpedo marmorata electric organ].
    Rousselet A; Cartaud J; Devaux PF
    C R Seances Acad Sci D; 1979 Sep; 289(5):461-3. PubMed ID: 229987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes.
    Dreger M; Krauss M; Herrmann A; Hucho F
    Biochemistry; 1997 Jan; 36(4):839-47. PubMed ID: 9020782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes in alkaline-treated postsynaptic membranes from Torpedo marmorata are not due to lipid hydrolysis.
    Neugebauer DC; Zingsheim HP
    Biochim Biophys Acta; 1982 Jan; 684(2):272-6. PubMed ID: 7055569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid mobility and order in bovine rod outer segment disk membranes. A spin-label study of lipid-protein interactions.
    Pates RD; Marsh D
    Biochemistry; 1987 Jan; 26(1):29-39. PubMed ID: 3030400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane assembly studied by spin-label electron spin resonance.
    Marsh D
    Braz J Med Biol Res; 1996 Jul; 29(7):863-71. PubMed ID: 9070375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition of lipids in elasmobranch electric organ and acetylcholine receptor membranes.
    Rotstein NP; Arias HR; Barrantes FJ; Aveldaño MI
    J Neurochem; 1987 Nov; 49(5):1333-40. PubMed ID: 2822851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.