These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 6272850)
1. Effects of temperature, lipid modification and pH on the mobility of the major proteins of the receptor-rich membranes from Torpedo marmarata. Rousselet A; Cartaud J; Devaux PF Biochim Biophys Acta; 1981 Nov; 648(2):169-85. PubMed ID: 6272850 [TBL] [Abstract][Full Text] [Related]
3. The rotational diffusion of the acetylcholine receptor in Torpeda marmorata membrane fragments studied with a spin-labelled alpha-toxin: importance of the 43 000 protein(s). Rousselet A; Cartaud J; Devaux PF; Changeux JP EMBO J; 1982; 1(4):439-45. PubMed ID: 6329680 [TBL] [Abstract][Full Text] [Related]
4. A Raman spectroscopic investigation of the lipid state in acetylcholine receptor-rich membranes from Torpedo marmorata. Aslanian D; Négrerie M EMBO J; 1985 Apr; 4(4):965-9. PubMed ID: 4018037 [TBL] [Abstract][Full Text] [Related]
5. Saturation transfer electron paramagnetic resonance on membrane bound proteins. II-Absence of rotational diffusion of the cholinergic receptor protein in Torpedo marmorata membrane fragments. Rousselet A; Devaux PF Biochem Biophys Res Commun; 1977 Sep; 78(1):448-54. PubMed ID: 199171 [No Abstract] [Full Text] [Related]
6. Reconstitution of a functional acetylcholine receptor. Polypeptide chains, ultrastructure, and binding sites for acetylcholine and local anesthetics. Sobel A; Heidmann T; Cartaud J; Changeux JP Eur J Biochem; 1980 Sep; 110(1):13-33. PubMed ID: 7439153 [TBL] [Abstract][Full Text] [Related]
7. Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes from Torpedo marmorata electric organ. Cartaud J; Sobel A; Rousselet A; Devaux PF; Changeux JP J Cell Biol; 1981 Aug; 90(2):418-26. PubMed ID: 7287814 [TBL] [Abstract][Full Text] [Related]
8. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Marsh D; Barrantes FJ Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4329-33. PubMed ID: 212745 [TBL] [Abstract][Full Text] [Related]
9. Lipid-protein interactions and effect of local anesthetics in acetylcholine receptor-rich membranes from Torpedo marmorata electric organ. Mantipragada SB; Horváth LI; Arias HR; Schwarzmann G; Sandhoff K; Barrantes FJ; Marsh D Biochemistry; 2003 Aug; 42(30):9167-75. PubMed ID: 12885251 [TBL] [Abstract][Full Text] [Related]
10. Fluidity of the lipids next to the acetylcholine receptor protein of torpedo membrane fragments. Use of amphiphilic reversible spin-labels. Bienvenüe A; Rousselet A; Kato G; Devaux PF Biochemistry; 1977 Mar; 16(5):841-8. PubMed ID: 191058 [TBL] [Abstract][Full Text] [Related]
11. Oligomeric forms of the membrane-bound acetylcholine receptor disclosed upon extraction of the Mr 43,000 nonreceptor peptide. Barrantes FJ J Cell Biol; 1982 Jan; 92(1):60-8. PubMed ID: 6173390 [TBL] [Abstract][Full Text] [Related]
12. Membranes rich in acetylcholine receptor: characterization and reconstitution to excitable membranes from exogenous lipids. Schiebler W; Hucho F Eur J Biochem; 1978 Apr; 85(1):55-63. PubMed ID: 639824 [TBL] [Abstract][Full Text] [Related]
14. A novel spin-label for study of membrane protein rotational diffusion using saturation transfer electron spin resonance. Application to selectively labelled class I and class II-SH groups of the shark rectal gland Na+/K+-ATPase. Esmann M; Hankovszky HO; Hideg K; Marsh D Biochim Biophys Acta; 1989 Jan; 978(2):209-15. PubMed ID: 2536556 [TBL] [Abstract][Full Text] [Related]
15. [Importance of protein-protein interactions for the structural integrity of membrane framents from Torpedo marmorata electric organ]. Rousselet A; Cartaud J; Devaux PF C R Seances Acad Sci D; 1979 Sep; 289(5):461-3. PubMed ID: 229987 [TBL] [Abstract][Full Text] [Related]
16. Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes. Dreger M; Krauss M; Herrmann A; Hucho F Biochemistry; 1997 Jan; 36(4):839-47. PubMed ID: 9020782 [TBL] [Abstract][Full Text] [Related]
17. Structural changes in alkaline-treated postsynaptic membranes from Torpedo marmorata are not due to lipid hydrolysis. Neugebauer DC; Zingsheim HP Biochim Biophys Acta; 1982 Jan; 684(2):272-6. PubMed ID: 7055569 [TBL] [Abstract][Full Text] [Related]
18. Lipid mobility and order in bovine rod outer segment disk membranes. A spin-label study of lipid-protein interactions. Pates RD; Marsh D Biochemistry; 1987 Jan; 26(1):29-39. PubMed ID: 3030400 [TBL] [Abstract][Full Text] [Related]
19. Membrane assembly studied by spin-label electron spin resonance. Marsh D Braz J Med Biol Res; 1996 Jul; 29(7):863-71. PubMed ID: 9070375 [TBL] [Abstract][Full Text] [Related]
20. Composition of lipids in elasmobranch electric organ and acetylcholine receptor membranes. Rotstein NP; Arias HR; Barrantes FJ; Aveldaño MI J Neurochem; 1987 Nov; 49(5):1333-40. PubMed ID: 2822851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]