These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 6273160)

  • 1. Solvent and temperature effects on crambin, a hydrophobic protein, as investigated by proton magnetic resonance.
    De Marco A; Lecompte JT; Llinás M
    Eur J Biochem; 1981 Oct; 119(3):483-90. PubMed ID: 6273160
    [No Abstract]   [Full Text] [Related]  

  • 2. Proton magnetic resonance study of crambin, a hyperstable hydrophobic protein, at 250 and 600 MHz.
    Llinás M; De Marco A; Lecomte JT
    Biochemistry; 1980 Mar; 19(6):1140-5. PubMed ID: 6892782
    [No Abstract]   [Full Text] [Related]  

  • 3. Proton magnetic resonance studies of barley and wheat thionins: structural homology with crambin.
    Lecomte JT; Jones BL; Llinás M
    Biochemistry; 1982 Sep; 21(20):4843-9. PubMed ID: 6291592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton magnetic resonance studies in trifluoroethanol. Solvent mixtures as a means of delineating peptide protons.
    Pitner TP; Urry DW
    J Am Chem Soc; 1972 Feb; 94(4):1399-400. PubMed ID: 5060284
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of the aromatic proton magnetic resonance spectrum of crambin.
    Lecomte JT; Llinás M
    Biochemistry; 1984 Sep; 23(20):4799-807. PubMed ID: 6548643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton magnetic resonance characterization of phoratoxins and homologous proteins related to crambin.
    Lecomte JT; Kaplan D; Llinás M; Thunberg E; Samuelsson G
    Biochemistry; 1987 Feb; 26(4):1187-94. PubMed ID: 3567163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary structure and hydrogen bonding of crambin in solution. A two-dimensional NMR study.
    Lamerichs RM; Berliner LJ; Boelens R; De Marco A; Llinàs M; Kaptein R
    Eur J Biochem; 1988 Jan; 171(1-2):307-12. PubMed ID: 3338468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface.
    Ahn HC; Juranić N; Macura S; Markley JL
    J Am Chem Soc; 2006 Apr; 128(13):4398-404. PubMed ID: 16569017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed FT-NMR double resonance studies of yeast tRNAPhe: specific nuclear Overhauser effects and reinterpretation of low temperature relaxation data.
    Johnston PD; Redfield AG
    Nucleic Acids Res; 1978 Oct; 5(10):3913-27. PubMed ID: 364421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Order and disorder in water structure of crystalline proteins.
    Teeter MM
    Dev Biol Stand; 1992; 74():63-72. PubMed ID: 1592186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein rotational relaxation as studied by solvent 1H and 2H magnetic relaxation.
    Hallenga K; Koenig SH
    Biochemistry; 1976 Sep; 15(19):4255-64. PubMed ID: 963035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution and ion-complexed conformations of beauvericin determined by proton magnetic resonance spectroscopy.
    Khaled MA; Davies DB
    Biochim Biophys Acta; 1982 Jun; 704(2):186-96. PubMed ID: 6285981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of osmolytes on the exchange rates of backbone amide protons in proteins.
    Foord RL; Leatherbarrow RJ
    Biochemistry; 1998 Mar; 37(9):2969-78. PubMed ID: 9485449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR measurements of proton exchange between solvent and peptides and proteins.
    Wójcik J; Ruszczyńska K; Zhukov I; Ejchart A
    Acta Biochim Pol; 1999; 46(3):651-63. PubMed ID: 10698273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature of lysozyme-water interactions by proton NMR.
    Prosser S; Peemoeller H
    Biochem Cell Biol; 1991; 69(5-6):341-5. PubMed ID: 1654941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton nuclear magnetic resonance studies of ribonuclease A in H 2 O.
    Patel DJ; Woodward CK; Bovey FA
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):599-602. PubMed ID: 4501576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proton magnetic resonance and a circular dichroism study of the solvent dependent conformation of the synthetic tubulin fragment Ac tubulin, alpha (430-441) amide and its interaction with substance-P.
    Sugiura M; Maccioni RB; Cann JR; York EJ; Stewart JM; Kotovych G
    J Biomol Struct Dyn; 1987 Jun; 4(6):1105-17. PubMed ID: 2481463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent and H/D isotope effects on the proton transfer pathways in heteroconjugated hydrogen-bonded phenol-carboxylic acid anions observed by combined UV-vis and NMR spectroscopy.
    Koeppe B; Guo J; Tolstoy PM; Denisov GS; Limbach HH
    J Am Chem Soc; 2013 May; 135(20):7553-66. PubMed ID: 23607931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear magnetic resonance studies of exchangeable protons. II. The solvent exchange rate of the indole nitrogen proton of tryptophan derivatives.
    Waelder SF; Redfield AG
    Biopolymers; 1977 Mar; 16(3):623-9. PubMed ID: 14742
    [No Abstract]   [Full Text] [Related]  

  • 20. Test of circular dichroism (CD) methods for crambin and CD-assisted secondary structure prediction of its homologous toxins.
    Teeter MM; Whitlow M
    Proteins; 1988; 4(4):262-73. PubMed ID: 3253736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.