BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 6273217)

  • 1. Resonance Raman and surface-enhanced resonance Raman studies of cytochrome cd1.
    Cotton TM; Timkovich R; Cork MS
    FEBS Lett; 1981 Oct; 133(1):39-44. PubMed ID: 6273217
    [No Abstract]   [Full Text] [Related]  

  • 2. Isolation of Paracoccus denitrificans cytochrome cd1: comparative kinetics with other nitrite reductases.
    Timkovich R; Dhesi R; Martinkus KJ; Robinson MK; Rea TM
    Arch Biochem Biophys; 1982 Apr; 215(1):47-58. PubMed ID: 6284044
    [No Abstract]   [Full Text] [Related]  

  • 3. On the structure of heme d1. An isobacteriochlorin derivative as the prosthetic group of dissimilatory nitrite reductase?
    Chang CK
    J Biol Chem; 1985 Aug; 260(17):9520-2. PubMed ID: 3926768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of the resonance Raman spectra of bacterial cytochromes.
    Lewis MA; Timkovich R; Cotton TM
    Arch Biochem Biophys; 1985 Feb; 236(2):515-25. PubMed ID: 2982314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman spectra of cytochromes c and b in Paracoccus denitrificans membranes: evidence for heme--heme interactions.
    Adar F; Dixit SN; Erecińska M
    Biochemistry; 1981 Dec; 20(26):7528-31. PubMed ID: 6275884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bacterial c-type cytochrome can be translocated to the periplasm as an apo form; the biosynthesis of cytochrome cd1 (nitrite reductase) from Paracoccus denitrificans.
    Page MD; Ferguson SJ
    Mol Microbiol; 1989 May; 3(5):653-61. PubMed ID: 2548064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proposed structure for the noncovalently associated heme prosthetic group of dissimilatory nitrite reductases. Identification of substituents.
    Timkovich R; Cork MS; Taylor PV
    J Biol Chem; 1984 Feb; 259(3):1577-85. PubMed ID: 6420411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cytochrome c peroxidase of Paracoccus denitrificans.
    Pettigrew GW
    Biochim Biophys Acta; 1991 May; 1058(1):25-7. PubMed ID: 1646012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme-heme orientation and electron transfer kinetic behavior of multisite oxidation-reduction enzymes.
    Makinen MW; Schichman SA; Hill SC; Gray HB
    Science; 1983 Nov; 222(4626):929-31. PubMed ID: 6415814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramolecular electron transfer from c heme to d1 heme in bacterial cytochrome cd1 nitrite reductase occurs over the same distances at very different rates depending on the source of the enzyme.
    Kobayashi K; Koppenhöfer A; Ferguson SJ; Watmough NJ; Tagawa S
    Biochemistry; 2001 Jul; 40(29):8542-7. PubMed ID: 11456493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cellular location and specificity of bacterial cytochrome c peroxidases.
    Goodhew CF; Wilson IB; Hunter DJ; Pettigrew GW
    Biochem J; 1990 Nov; 271(3):707-12. PubMed ID: 2173903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of product inhibition for bacterial nitrite reductase.
    Dhesi R; Timkovich R
    Biochem Biophys Res Commun; 1984 Sep; 123(3):966-72. PubMed ID: 6091654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apo forms of cytochrome c550 and cytochrome cd1 are translocated to the periplasm of Paracoccus denitrificans in the absence of haem incorporation caused either mutation or inhibition of haem synthesis.
    Page MD; Ferguson SJ
    Mol Microbiol; 1990 Jul; 4(7):1181-92. PubMed ID: 2172694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational changes occurring upon reduction and NO binding in nitrite reductase from Pseudomonas aeruginosa.
    Nurizzo D; Cutruzzolà F; Arese M; Bourgeois D; Brunori M; Cambillau C; Tegoni M
    Biochemistry; 1998 Oct; 37(40):13987-96. PubMed ID: 9760233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman spectroscopy of the cytochrome c oxidase from Paracoccus denitrificans.
    Lynch SR; Carter RH; Copeland RA
    Biochemistry; 1993 Jul; 32(27):6923-7. PubMed ID: 8392865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1H NMR spectroscopy of cytochrome cd1 derivatives.
    Timkovich R; Cork MS; Taylor PV
    Arch Biochem Biophys; 1985 Aug; 240(2):689-97. PubMed ID: 2992381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of the cytochrome cd1 and copper nitrite reductases in denitrifying bacteria.
    Coyne MS; Arunakumari A; Pankratz HS; Tiedje JM
    J Bacteriol; 1990 May; 172(5):2558-62. PubMed ID: 2158973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and vibrational spectroscopy of the cytochrome c:cytochrome c oxidase complexes from bovine and Paracoccus denitrificans.
    Lynch SR; Copeland RA
    Protein Sci; 1992 Nov; 1(11):1428-34. PubMed ID: 1338946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical role of His369 in the reactivity of Pseudomonas aeruginosa cytochrome cd1 nitrite reductase with oxygen.
    Centola F; Rinaldo S; Brunori M; Cutruzzolà F
    FEBS J; 2006 Oct; 273(19):4495-503. PubMed ID: 16965540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat stabilization dependence on redox state of cytochrome cd1 oxidase from Pseudomonas aeruginosa.
    Mitra S; Donovan JW; Bersohn R
    Biochem Biophys Res Commun; 1981 Jan; 98(1):140-6. PubMed ID: 6260097
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.