BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 6273386)

  • 21. The oxidation of nicotinic acid by Pseudomonas ovalis Chester. The terminal oxidase.
    Jones MV; Hughes DE
    Biochem J; 1972 Sep; 129(3):755-61. PubMed ID: 4349118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon monoxide oxygenase activity of cytochrome cd1.
    Timkovich R; Thrasher JS
    Biochemistry; 1988 Jul; 27(14):5383-8. PubMed ID: 3139034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Dec; 35(49):15814-21. PubMed ID: 8961945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila.
    Terlesky KC; Ferry JG
    J Biol Chem; 1988 Mar; 263(9):4075-9. PubMed ID: 3279028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of oxygen limitation on the formation of the electron transport system of the phytopathogenic fluorescent bacterium Pseudomonas cichorii.
    Zannoni D
    J Bioenerg Biomembr; 1986 Dec; 18(6):461-70. PubMed ID: 3025191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of poly(3-hydroxybutyrate) by the autotrophic CO-oxidizing bacterium Seliberia carboxydohydrogena Z-1062.
    Volova T; Zhila N; Shishatskaya E
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1377-87. PubMed ID: 26254039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of CO dehydrogenase with the cytoplasmic membrane monitored by fluorescence correlation spectroscopy.
    Spreitler F; Brock C; Pelzmann A; Meyer O; Köhler J
    Chembiochem; 2010 Nov; 11(17):2419-23. PubMed ID: 20979125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases.
    Jeoung JH; Fesseler J; Goetzl S; Dobbek H
    Met Ions Life Sci; 2014; 14():37-69. PubMed ID: 25416390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon monoxide utilization of an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4.
    Yano T; Yoshida N; Takagi H
    J Biosci Bioeng; 2012 Jul; 114(1):53-5. PubMed ID: 22561879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth of mycobacteria on carbon monoxide and methanol.
    Park SW; Hwang EH; Park H; Kim JA; Heo J; Lee KH; Song T; Kim E; Ro YT; Kim SW; Kim YM
    J Bacteriol; 2003 Jan; 185(1):142-7. PubMed ID: 12486050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications.
    Anderson ME; Lindahl PA
    Biochemistry; 1996 Jun; 35(25):8371-80. PubMed ID: 8679595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata.
    Zannoni D; Melandri BA; Baccarini-Melandri A
    Biochim Biophys Acta; 1976 Mar; 423(3):413-30. PubMed ID: 177045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity.
    King GM
    Appl Environ Microbiol; 2003 Dec; 69(12):7257-65. PubMed ID: 14660374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron flow and heme-heme interaction between cytochromes b-558, b-595 and d in a terminal oxidase of Escherichia coli.
    Hata-Tanaka A; Matsuura K; Itoh S; Anraku Y
    Biochim Biophys Acta; 1987 Sep; 893(2):289-95. PubMed ID: 3040093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gas channel rerouting in a primordial enzyme: Structural insights of the carbon-monoxide dehydrogenase/acetyl-CoA synthase complex from the acetogen Clostridium autoethanogenum.
    Lemaire ON; Wagner T
    Biochim Biophys Acta Bioenerg; 2021 Jan; 1862(1):148330. PubMed ID: 33080205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nature's carbonylation catalyst: Raman spectroscopic evidence that carbon monoxide binds to iron, not nickel, in CO dehydrogenase.
    Qiu D; Kumar M; Ragsdale SW; Spiro TG
    Science; 1994 May; 264(5160):817-9. PubMed ID: 8171334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri.
    Krzycki JA; Zeikus JG
    J Bacteriol; 1984 Apr; 158(1):231-7. PubMed ID: 6425262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insight into Energy Conservation via Alternative Carbon Monoxide Metabolism in Carboxydothermus pertinax Revealed by Comparative Genome Analysis.
    Fukuyama Y; Omae K; Yoneda Y; Yoshida T; Sako Y
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728389
    [No Abstract]   [Full Text] [Related]  

  • 39. DNA sequence of the cut A, B and C genes, encoding the molybdenum containing hydroxylase carbon monoxide dehydrogenase, from Pseudomonas thermocarboxydovorans strain C2.
    Pearson DM; O'Reilly C; Colby J; Black GW
    Biochim Biophys Acta; 1994 Dec; 1188(3):432-8. PubMed ID: 7803457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: cell growth and properties of the oxidation system.
    Uffen RL
    J Bacteriol; 1983 Sep; 155(3):956-65. PubMed ID: 6688413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.