BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 6273388)

  • 1. The interactions of lysophosphatidylcholine with protein-containing liposomes.
    Kurakata S; Nojima S; Inoue K
    J Biochem; 1981 Sep; 90(3):657-63. PubMed ID: 6273388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transbilayer distribution and movement of lysophosphatidylcholine in liposomal membranes.
    van den Besselaar AM; van den Bosch H; van Deenen LL
    Biochim Biophys Acta; 1977 Mar; 465(3):454-65. PubMed ID: 836837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lipid composition on HVJ-mediated fusion of glycophorin liposomes to erythrocytes.
    Umeda M; Nojima S; Inoue K
    J Biochem; 1985 May; 97(5):1301-10. PubMed ID: 2993266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of albumin and methylated albumin on the glucose permeability of lipid membranes.
    Kitagawa T; Inoue K; Nojima S
    J Biochem; 1976 Jun; 79(6):1135-45. PubMed ID: 956147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HVJ-mediated fusion between erythrocyte membranes and liposomes containing glycophorin.
    Umeda M; Nojima S; Inoue K
    J Biochem; 1983 Dec; 94(6):1955-66. PubMed ID: 6323386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between glycophorin and ganglioside GM1 on liposomal membranes. Effect of the interaction on the susceptibility of membranes to HVJ.
    Umeda M; Kanda S; Nojima S; Wiegandt H; Inoue K
    J Biochem; 1984 Jul; 96(1):229-35. PubMed ID: 6092326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of human erythrocyte hemolysis induced by short-chain phosphatidylcholines and lysophosphatidylcholine.
    Tanaka Y; Mashino K; Inoue K; Nojima S
    J Biochem; 1983 Sep; 94(3):833-40. PubMed ID: 6643425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysophosphatidylcholine in liposomal membranes: enhanced permeability but little effect on transfer of a water-soluble fluorescent marker into human lymphocytes.
    Ralston E; Blumenthal R; Weinstein JN; Sharrow SO; Henkart P
    Biochim Biophys Acta; 1980 Apr; 597(3):543-51. PubMed ID: 7378402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscopic study on the interaction of Sendai virus with liposomes containing glycophorin.
    Oku N; Inoue K; Nojima S; Sekiya T; Nozawa Y
    Biochim Biophys Acta; 1982 Sep; 691(1):91-6. PubMed ID: 6291608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The presence of lysophosphatidylcholine in chromaffin granules.
    Arthur G; Sheltawy A
    Biochem J; 1980 Nov; 191(2):523-32. PubMed ID: 7236208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of lysophosphatidylcholine in single bilayer vesicles prepared without sonication.
    de Oliveira Filgueiras OM; van den Besselaar AM; van den Bosch H
    Biochim Biophys Acta; 1977 Dec; 471(3):391-400. PubMed ID: 921989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-mediated transbilayer movement of lysophosphatidylcholine in glycophorin-containing vesicles.
    van Zoelen EJ; de Kruijff B; van Deenen LL
    Biochim Biophys Acta; 1978 Mar; 508(1):97-108. PubMed ID: 629969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-dependent interaction of D-beta-hydroxybutyrate dehydrogenase with cellular membranes.
    Miyahara M; Nishihara Y; Morimizato Y; Utsumi K
    Biochim Biophys Acta; 1981 Feb; 641(1):232-41. PubMed ID: 7213715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Lipolysis in model membranes in the presence of positively charged soluble proteins].
    Naubatova MK; Litvinko NM; Kisel' MA; Akhrem AA
    Biokhimiia; 1992 Apr; 57(4):597-603. PubMed ID: 1322192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycophorin and the concanavalin A receptor of human erythrocytes: their receptor function in lipid bilayers.
    Sharom FJ; Barratt DG; Grant CW
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2751-5. PubMed ID: 268624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Availability of lysophosphatidylcholine in single bilayer vesicles for hydrolysis by lysophospholipase.
    de Oliveira Filgueiras OM; van den Besselaar AM; van den Bosch H
    Lipids; 1978 Dec; 13(12):898-904. PubMed ID: 750831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of lysophosphatidylcholine on the radiation-induced lipid peroxidation in liposomes].
    Kisel' MA; Shadyro OI; Iurkova IL
    Radiats Biol Radioecol; 2001; 41(1):20-3. PubMed ID: 11253694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation of cytochrome c from liposomes by histone H1. Comparison with basic peptides.
    Rytömaa M; Kinnunen PK
    Biochemistry; 1996 Apr; 35(14):4529-39. PubMed ID: 8605203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducible release of particulates from liposomes using the mechanosensitive channel of large conductance and L-α-lysophosphatidylcholine.
    Foo A; Battle AR; Chi G; Hankamer B; Landsberg MJ; Martinac B
    Eur Biophys J; 2015 Oct; 44(7):521-30. PubMed ID: 26143502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [New method of lysophospholipid incorporation into biological membranes. Effect of lysophosphatidylcholine on the activity of membrane-bound enzymes].
    Diatlovitskaia EV; Lemenovskaia AF; Valdnietse AT; Sinitsyna EV; Bergel'son LD
    Biokhimiia; 1980 Nov; 45(11):2036-43. PubMed ID: 6263366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.