These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 6274111)
1. On the mechanism of red blood cell shape change and release of spectrin-free vesicles. Müller H; Schmidt U; Lutz HU Acta Biol Med Ger; 1981; 40(4-5):413-7. PubMed ID: 6274111 [TBL] [Abstract][Full Text] [Related]
2. Vesicles isolated from ATP-depleted erythrocytes and out of thrombocyte-rich plasma. Lutz HU J Supramol Struct; 1978; 8(3):375-89. PubMed ID: 723272 [TBL] [Abstract][Full Text] [Related]
3. Shaping the too fluid bilayer. Morrow JS; Anderson RA Lab Invest; 1986 Mar; 54(3):237-40. PubMed ID: 3005766 [No Abstract] [Full Text] [Related]
4. Membrane protein organization in ATP-depleted and irreversibly sickled red cells. Palek J; Liu SC J Supramol Struct; 1979; 10(1):79-96. PubMed ID: 108478 [No Abstract] [Full Text] [Related]
5. The molecular basis for membrane - cytoskeleton association in human erythrocytes. Bennett V J Cell Biochem; 1982; 18(1):49-65. PubMed ID: 6461664 [TBL] [Abstract][Full Text] [Related]
6. [Molecular interactions of membrane proteins and erythrocyte deformability]. Boivin P Acta Med Port; 1983 Apr; Suppl():13-36. PubMed ID: 6224399 [No Abstract] [Full Text] [Related]
7. Crosslinking of the nearest membrane protein neighbors in ATP depleted, calcium enriched and irreversibly sickled red cells. Palek J; Liu SC; Liu PA Prog Clin Biol Res; 1978; 20():75-91. PubMed ID: 26062 [TBL] [Abstract][Full Text] [Related]
8. Spectrin binding and the control of membrane protein mobility. Goodman SR; Branton D J Supramol Struct; 1978; 8(4):455-63. PubMed ID: 723278 [TBL] [Abstract][Full Text] [Related]
9. Studies on human erythrocyte spectrin.4.1.actin complex with the use of cytochalasins. Lin DC Prog Clin Biol Res; 1981; 56():117-36. PubMed ID: 7330006 [No Abstract] [Full Text] [Related]
10. Membrane protein and organization in normal and hemoglobinopathic red cells. Palek J Tex Rep Biol Med; 1980-1981; 40():397-416. PubMed ID: 6459658 [No Abstract] [Full Text] [Related]
11. Calcium affects phosphoinositide turnover in human erythrocytes. Folk P; Strunecká A Gen Physiol Biophys; 1990 Jun; 9(3):281-90. PubMed ID: 2168334 [TBL] [Abstract][Full Text] [Related]
13. State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes. Anderson JM; Tyler JM J Biol Chem; 1980 Feb; 255(4):1259-65. PubMed ID: 7354025 [No Abstract] [Full Text] [Related]
14. Mechanism of selective release of membrane proteins from human erythrocytes in the presence of liposomes. Suzuki K; Okumura Y Arch Biochem Biophys; 2000 Jul; 379(2):344-52. PubMed ID: 10898954 [TBL] [Abstract][Full Text] [Related]
16. Changes in proteolytic susceptibility of human erythrocyte membrane proteins during red blood cell aging. Gaczyńska M Cytobios; 1992; 72(290-291):197-200. PubMed ID: 1298582 [TBL] [Abstract][Full Text] [Related]
17. On the mechanism of vesicle release from ATP-depleted human red blood cells. Müller H; Schmidt U; Lutz HU Biochim Biophys Acta; 1981 Dec; 649(2):462-70. PubMed ID: 7317411 [TBL] [Abstract][Full Text] [Related]
18. Membrane phosphorylation in intact human erythrocytes. Reimann B; Klatt D; Tsamaloukas AG; Maretzki D Acta Biol Med Ger; 1981; 40(4-5):487-93. PubMed ID: 7315094 [TBL] [Abstract][Full Text] [Related]
19. Shape and volume changes in erythrocyte ghosts and spectrin-actin networks. Johnson RM; Taylor G; Meyer DB J Cell Biol; 1980 Aug; 86(2):371-6. PubMed ID: 6893198 [TBL] [Abstract][Full Text] [Related]
20. The interaction of DNR and glutaraldehyde with cell membrane proteins leads to morphological changes in erythrocytes. Marczak A; Jóźwiak Z Cancer Lett; 2008 Feb; 260(1-2):118-26. PubMed ID: 18060688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]