BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6274322)

  • 1. Cyclic AMP phosphodiesterase activity during differentiation of rabbit erythroid bone marrow cells.
    Setchenska MS; Arnstein HR; Vassileva-Popova JG
    Biochem J; 1981 Jun; 196(3):887-92. PubMed ID: 6274322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of the adenylyl cyclase system of differentiating rabbit bone marrow erythroblasts.
    Setchenska MS; Arnstein HR
    Biomed Biochim Acta; 1983; 42(9):1111-22. PubMed ID: 6322745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP-binding and cyclic AMP-dependent protein kinase activities in the cytosol of differentiating bone marrow erythroblasts.
    Setchenska MS; Vassileva-Popova JG; Arnstein HR
    Biochem J; 1981 Jun; 196(3):893-7. PubMed ID: 6274323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of the adenylate cyclase system of differentiating rabbit bone marrow erythroblasts.
    Setchenska MS; Arnstein HR
    Biomed Biochim Acta; 1983; 42(11-12):S192-6. PubMed ID: 6326769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of cyclic AMP phosphodiesterase regulation.
    Dudkin SM; Mikchaylova LI; Severin ES
    Adv Enzyme Regul; 1983; 21():333-52. PubMed ID: 6100586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of the beta-adrenergic adenylate cyclase system of developing rabbit bone-marrow erythroblasts.
    Setchenska MS; Arnstein HR
    Biochem J; 1983 Feb; 210(2):559-66. PubMed ID: 6860310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexokinase in developing rabbit erythroid cells.
    Magnani M; Stocchi V; Dachà M; Fornaini G
    Biochim Biophys Acta; 1984 Nov; 802(2):346-51. PubMed ID: 6498223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the lactate dehydrogenase isoenzyme pattern during differentiation of rabbit bone-marrow erythroid cells.
    Setchenska MS; Arnstein HR
    Biochem J; 1978 Feb; 170(2):193-201. PubMed ID: 637836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase activities of rat mammary tissue.
    Mullaney I; Clegg RA
    Biochem J; 1984 May; 219(3):801-9. PubMed ID: 6331397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolism of cyclic nucleotides in the guinea-pig pancreas. Cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase.
    Methven P; Lemon M; Bhoola K
    Biochem J; 1980 Feb; 186(2):491-8. PubMed ID: 6246887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of (Ca2+ + Mg2+)-ATPase and cyclic 3':5'-nucleotide phosphodiesterase activators.
    Au KS; Lee CM
    Int J Biochem; 1978; 9(5):339-41. PubMed ID: 208887
    [No Abstract]   [Full Text] [Related]  

  • 12. Ontogenetic changes in adenylate cyclase, cyclic AMP phosphodiesterase and calmodulin in chick ventricular myocardium.
    Epstein PM; Andrenyak DM; Smith CJ; Pappano AJ
    Biochem J; 1987 Apr; 243(2):525-31. PubMed ID: 2820384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Ca2+-calmodulin-activated cyclic nucleotide phosphodiesterase from the rabbit myometrium].
    Osipenko AA; Prishchepa LA; Kurskiĭ MD
    Ukr Biokhim Zh (1978); 1986; 58(4):26-31. PubMed ID: 3016961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular distribution of ribonuclease activity during erythroid cell development.
    Hulea SA; Arnstein HR
    Biochim Biophys Acta; 1977 May; 476(2):131-48. PubMed ID: 16651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a calmodulin-dependent high-affinity cyclic AMP and cyclic GMP phosphodiesterase from male mouse germ cells.
    Geremia R; Rossi P; Mocini D; Pezzotti R; Conti M
    Biochem J; 1984 Feb; 217(3):693-700. PubMed ID: 6324744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and kinetic properties of two soluble forms of calmodulin-dependent cyclic nucleotide phosphodiesterase from rat pancreas.
    Vandermeers A; Vandermeers-Piret MC; Rathe J; Christophe J
    Biochem J; 1983 May; 211(2):341-7. PubMed ID: 6307278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prostaglandin E2-mediated anabolic effect of a novel inhibitor of phosphodiesterase 4, XT-611, in the in vitro bone marrow culture.
    Miyamoto K; Suzuki H; Yamamoto S; Saitoh Y; Ochiai E; Moritani S; Yokogawa K; Waki Y; Kasugai S; Sawanishi H; Yamagami H
    J Bone Miner Res; 2003 Aug; 18(8):1471-7. PubMed ID: 12929936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular cyclic AMP-phosphodiesterase accelerates differentiation in Dictyostelium discoideum.
    Alcântara F; Bazill GW
    J Gen Microbiol; 1976 Feb; 92(2):351-68. PubMed ID: 176311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of plasma membranes with influenza virus. VII. Effect on 3',5'-cyclic adenosine monophosphate phosphodiesterase activity.
    Krizanová O; Lacinová D; Knopp J
    Acta Virol; 1977 Mar; 21(2):97-103. PubMed ID: 17292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Properties of cyclic nucleotide phosphodiesterase of the rabbit myometrium in various functional states].
    Kurskiĭ MD; Osipenko AA; Prishchepa LA
    Biokhimiia; 1984 Jul; 49(7):1096-102. PubMed ID: 6089916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.