BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6274352)

  • 1. Anthracenedione activation by NADPH-cytochrome P-450 reductase; comparison with anthracyclines.
    Kharasch ED; Novak RF
    Biochem Pharmacol; 1981 Oct; 30(20):2881-4. PubMed ID: 6274352
    [No Abstract]   [Full Text] [Related]  

  • 2. Bis(alkylamino)anthracenedione antineoplastic agent metabolic activation by NADPH-cytochrome P-450 reductase and NADH dehydrogenase: diminished activity relative to anthracyclines.
    Kharasch ED; Novak RF
    Arch Biochem Biophys; 1983 Jul; 224(2):682-94. PubMed ID: 6408991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of competition between cytochrome c and anthraquinone type drugs for the reductive sites of NADH dehydrogenase.
    Tarasiuk J; Garnier-Suillerot A; Borowski E
    Biochem Pharmacol; 1989 Jul; 38(14):2285-9. PubMed ID: 2546562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The essential role of anthraquinones as substrates for NADH dehydrogenase in their redox cycling activity.
    Tarasiuk J; Garnier-Suillerot A; StefaƄska B; Borowski E
    Anticancer Drug Des; 1992 Aug; 7(4):329-40. PubMed ID: 1324690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide anion production by doxorubicin analogs in heart sarcosomes and by mitochondrial NADH dehydrogenase.
    Gervasi PG; Agrillo MR; Lippi A; Bernardini N; Danesi R; Del Tacca M
    Res Commun Chem Pathol Pharmacol; 1990 Jan; 67(1):101-15. PubMed ID: 2158133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase.
    Doroshow JH
    Cancer Res; 1983 Oct; 43(10):4543-51. PubMed ID: 6309369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals.
    Bachur NR; Gordon SL; Gee MV; Kon H
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):954-7. PubMed ID: 34156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic studies of the effect of Cu (II) on oxygen radical production stimulated by daunorubicin and ametantrone.
    Tarasiuk J; Kolodziejczyk P; Borowski E
    Biochem Pharmacol; 1990 May; 39(9):1405-10. PubMed ID: 2159304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thyroxine stimulation of rat liver microsomal NADH-cytochrome c reductase in vitro.
    Faas FH; Carter WJ; Wynn JO
    Life Sci; 1974 Dec; 15(12):2059-68. PubMed ID: 4157284
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of the anthrapyrazole antitumour agent CI941 on rat liver microsome and cytochrome P-450 reductase mediated free radical processes. Inhibition of doxorubicin activation in vitro.
    Graham MA; Newell DR; Butler J; Hoey B; Patterson LH
    Biochem Pharmacol; 1987 Oct; 36(20):3345-51. PubMed ID: 2823819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Interaction between cytochrome P-448 and NADP-cytochrome P-450 reductase in reconstituted microsomal membranes].
    Grishanova AIu; Mishin VM; Liakhovich VV
    Biokhimiia; 1985 Mar; 50(3):369-74. PubMed ID: 3995100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitoxantrone: propensity for free radical formation and lipid peroxidation--implications for cardiotoxicity.
    Novak RF; Kharasch ED
    Invest New Drugs; 1985; 3(2):95-9. PubMed ID: 2991163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Reconstitution of the monooxygenase system in a solution and in an immobilized phospholipid layer].
    Budennaia TIu; Dobrynina OV; Korneva EN; Lazarevich VG; Kuznetsova GP
    Biokhimiia; 1983 Dec; 48(12):2002-8. PubMed ID: 6423000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin.
    Davies KJ; Doroshow JH; Hochstein P
    FEBS Lett; 1983 Mar; 153(1):227-30. PubMed ID: 6298008
    [No Abstract]   [Full Text] [Related]  

  • 15. Reductive cleavage of anthracycline glycosides by microsomal NADPH-cytochrome C reductase.
    Oki T; Komiyama T; Tone H; Inui T; Takeuchi T; Umezawa H
    J Antibiot (Tokyo); 1977 Jul; 30(7):613-5. PubMed ID: 408319
    [No Abstract]   [Full Text] [Related]  

  • 16. [Effect of thyroxine on the NADH cytochrome c reductase activity of microsomes and outer mitochondrial membrane of rat liver depending on age].
    Lemeshko VV
    Biokhimiia; 1981 Oct; 46(10):1807-14. PubMed ID: 7306601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of cytochrome P-450 isoenzymes in the bioactivation of hydroxy anthraquinones.
    Fratta D; Simi S; Rainaldi G; Gervasi PG
    Anticancer Res; 1994; 14(6B):2597-603. PubMed ID: 7872687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of superoxide formation by respiratory chain NADH- dehydrogenase of bovine heart mitochondria.
    Kang D; Narabayashi H; Sata T; Takeshige K
    J Biochem; 1983 Oct; 94(4):1301-6. PubMed ID: 6317663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of the pesticide tocuthion on the activity of microsomal cytochrome P-450-dependent monooxygenases in the rat liver].
    Demidenko NM; Kamarin AS; Silant'eva EA
    Gig Tr Prof Zabol; 1990; (1):45-6. PubMed ID: 2328924
    [No Abstract]   [Full Text] [Related]  

  • 20. Inhibition of adriamycin-stimulated microsomal lipid peroxidation by mitoxantrone and ametantrone, two new anthracenedione antineoplastic agents.
    Kharasch ED; Novak RF
    Biochem Biophys Res Commun; 1982 Oct; 108(3):1346-52. PubMed ID: 6295377
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.