These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6276394)

  • 1. Hepatic glucagon-receptor complexes lose sensitivity to the dissociating effect of GTP.
    Corin RE; Ferriola P; Donner DB
    J Biol Chem; 1982 Feb; 257(4):1626-31. PubMed ID: 6276394
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of GTP on binding of (3H) glucagon to receptors in rat hepatic plasma membranes.
    Lin MC; Nicosia S; Lad PM; Rodbell M
    J Biol Chem; 1977 Apr; 252(8):2790-2. PubMed ID: 16000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glucagon receptor from liver can be functionally fused to caudate nucleus adenylate cyclase.
    Tolkovsky AM; Martin BR
    FEBS Lett; 1982 Dec; 150(2):337-42. PubMed ID: 6297980
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural analysis of the hepatic glucagon receptor. Identification of a guanine nucleotide-sensitive hormone-binding region.
    Iyengar R; Herberg JT
    J Biol Chem; 1984 Apr; 259(8):5222-9. PubMed ID: 6325424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of distinct receptor complexes that account for high-and low-affinity glucagon binding to hepatic plasma membranes.
    Mason JC; Tager HS
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6835-9. PubMed ID: 2995990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for distinct guanine nucleotide sites in the regulation of the glucagon receptor and of adenylate cyclase activity.
    Lad PM; Welton AF; Rodbell M
    J Biol Chem; 1977 Sep; 252(17):5942-6. PubMed ID: 197077
    [No Abstract]   [Full Text] [Related]  

  • 7. Differential effects of guanine nucleotides on the first step of VIP and glucagon action in membranes from liver cells.
    Amiranoff B; Laburthe M; Rosselin G
    Biochem Biophys Res Commun; 1980 Sep; 96(1):463-8. PubMed ID: 6254514
    [No Abstract]   [Full Text] [Related]  

  • 8. Divalent cations regulate glucagon binding. Evidence for actions on receptor-Ns complexes and on receptors uncoupled from Ns.
    Lipson KE; Kolhatkar AA; Maki RG; Donner DB
    Biochemistry; 1988 Feb; 27(4):1111-6. PubMed ID: 2835083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hormone receptor modulates the regulatory component of adenylyl cyclase by reducing its requirement for Mg2+ and enhancing its extent of activation by guanine nucleotides.
    Iyengar R; Birnbaumer L
    Proc Natl Acad Sci U S A; 1982 Sep; 79(17):5179-83. PubMed ID: 6291028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of glucagon receptors in Golgi fractions of rat liver: evidence for receptors that are uncoupled from adenylyl cyclase.
    Lipson KE; Kolhatkar AA; Cherksey BD; Donner DB
    Biochemistry; 1986 May; 25(9):2612-20. PubMed ID: 3013309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucagon receptor binding, dissociation and degradation in rat liver plasma membranes studied by a microperifusion method.
    Frandsen EK; Bacchus RA
    Biochim Biophys Acta; 1987 Jun; 929(1):74-80. PubMed ID: 3036248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent labeling of the hepatic glucagon receptor.
    Herberg JT; Iyengar R
    Methods Enzymol; 1985; 109():207-15. PubMed ID: 2985915
    [No Abstract]   [Full Text] [Related]  

  • 13. Receptor binding and adenylate cyclase activities of glucagon analogues modified in the N-terminal region.
    McKee RL; Pelton JT; Trivedi D; Johnson DG; Coy DH; Sueiras-Diaz J; Hruby VJ
    Biochemistry; 1986 Apr; 25(7):1650-6. PubMed ID: 3011069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guanosine 5'-triphosphate and guanosine 5'-[beta gamma-imido]triphosphate effect a collision coupling mechanism between the glucagon receptor and catalytic unit of adenylate cyclase.
    Houslay MD; Dipple I; Elliott KR
    Biochem J; 1980 Mar; 186(3):649-58. PubMed ID: 6249258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-mediated internalization of glucagon receptors in intact rat liver.
    Authier F; Desbuquois B; De Galle B
    Endocrinology; 1992 Jul; 131(1):447-57. PubMed ID: 1319325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the hepatic alpha 1-adrenergic receptor. Modulation of guanine nucleotide effects by calcium, temperature, and age.
    Lynch CJ; Charest R; Blackmore PF; Exton JH
    J Biol Chem; 1985 Feb; 260(3):1593-600. PubMed ID: 2981866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucagon binding to purified liver plasma membranes from growing rats undergoing energy restriction.
    Balage M; Grizard J; Pion R
    Reprod Nutr Dev (1980); 1983; 23(2a):183-94. PubMed ID: 6302752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucagon-like peptide-1 does not have a role in hepatic carbohydrate metabolism.
    Ghiglione M; Blazquez E; Uttenthal LO; de Diego JG; Alvarez E; George SK; Bloom SR
    Diabetologia; 1985 Dec; 28(12):920-1. PubMed ID: 3005098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobile receptor and collision coupling mechanisms for the activation of adenylate cyclase by glucagon.
    Houslay MD
    Adv Cyclic Nucleotide Res; 1981; 14():111-9. PubMed ID: 6269373
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of vinblastine on the glucagon, basal and GTP-stimulated states of the adenylate cyclase from rat liver plasma membranes.
    Whetton AD; Houslay MD
    FEBS Lett; 1980 Mar; 111(2):290-4. PubMed ID: 6244186
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.