BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6276496)

  • 1. Titration of transport and modifier sites in the red cell anion transport system.
    Wieth JO; Bjerrum PJ
    J Gen Physiol; 1982 Feb; 79(2):253-82. PubMed ID: 6276496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human erythrocyte anion transport protein, band 3. Characterization of exofacial alkaline titratable groups involved in anion binding/translocation.
    Bjerrum PJ
    J Gen Physiol; 1992 Aug; 100(2):301-39. PubMed ID: 1402784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride--bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites.
    Wieth JO; Andersen OS; Brahm J; Bjerrum PJ; Borders CL
    Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 299(1097):383-99. PubMed ID: 6130537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irreversible inactivation of red cell chloride exchange with phenylglyoxal, and arginine-specific reagent.
    Wieth JO; Bjerrum PJ; Borders CL
    J Gen Physiol; 1982 Feb; 79(2):283-312. PubMed ID: 6276497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism.
    Knauf PA; Law FY; Marchant PJ
    J Gen Physiol; 1983 Jan; 81(1):95-126. PubMed ID: 6833998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system.
    Knauf PA; Breuer W; McCulloch L; Rothstein A
    J Gen Physiol; 1978 Nov; 72(5):631-49. PubMed ID: 739256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate.
    Wieth JO
    J Physiol; 1979 Sep; 294():521-39. PubMed ID: 512956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetry of the red cell anion exchange system. Different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane.
    Knauf PA; Ship S; Breuer W; McCulloch L; Rothstein A
    J Gen Physiol; 1978 Nov; 72(5):607-30. PubMed ID: 739255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate transport in human red blood cells: concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions.
    Schnell KF; Besl E; von der Mosel R
    J Membr Biol; 1981; 61(3):173-92. PubMed ID: 7277470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time.
    Gunn RB; Fröhlich O
    J Gen Physiol; 1979 Sep; 74(3):351-74. PubMed ID: 479826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein.
    Bjerrum PJ; Wieth JO; Borders CL
    J Gen Physiol; 1983 Apr; 81(4):453-84. PubMed ID: 6854266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Location of the chloride self-inhibitory site of the human erythrocyte anion exchange system.
    Knauf PA; Mann NA
    Am J Physiol; 1986 Jul; 251(1 Pt 1):C1-9. PubMed ID: 2425624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NIP- and NAP-taurine bind to external modifier site of AE1 (band 3), at which iodide inhibits anion exchange.
    Knauf PA; Spinelli LJ
    Am J Physiol; 1995 Aug; 269(2 Pt 1):C410-6. PubMed ID: 7653523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent changes of chloride transport kinetics in human red cells.
    Brahm J
    J Gen Physiol; 1977 Sep; 70(3):283-306. PubMed ID: 19556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction of an anionic photoreactive probe with the anion transport system of the human red blood cell.
    Cabantchik ZI; Knauf PA; Ostwald T; Markus H; Davidson L; Breuer W; Rothstein A
    Biochim Biophys Acta; 1976 Dec; 455(2):526-37. PubMed ID: 999926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloride transport in human red cells.
    Dalmark M
    J Physiol; 1975 Aug; 250(1):39-64. PubMed ID: 240929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functions of extracellular lysine residues in the human erythrocyte anion transport protein.
    Jennings ML; Monaghan R; Douglas SM; Nicknish JS
    J Gen Physiol; 1985 Nov; 86(5):653-69. PubMed ID: 3934327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible inhibition of anion exchange in human erythrocytes by an inorganic disulfonate, tetrathionate.
    Deuticke B; von Bentheim M; Beyer E; Kamp D
    J Membr Biol; 1978 Dec; 44(2):135-58. PubMed ID: 731685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites?
    Milanick MA; Gunn RB
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C955-69. PubMed ID: 3013020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.