These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 62767)

  • 1. Retinal projections in the ringtailed possum Pseudocheirus peregrinus.
    Pearson LJ; Sanderson KJ; Wells RT
    J Comp Neurol; 1976 Nov; 170(2):227-40. PubMed ID: 62767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinal projections in the native cat, Dasyurus viverrinus.
    Sanderson KJ; Pearson LJ
    J Comp Neurol; 1977 Jul; 174(2):347-57. PubMed ID: 68042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinofugal pathways in two marsupials.
    Royce GJ; Ward JP; Harting JK
    J Comp Neurol; 1976 Dec; 170(3):391-413. PubMed ID: 993375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi.
    Cooper HM; Herbin M; Nevo E
    J Comp Neurol; 1993 Feb; 328(3):313-50. PubMed ID: 8440785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of very early monocular and binocular enucleation on primary visual centers in the tammar wallaby (Macropus eugenii).
    Marotte LR; Flett DL; Mark RF
    J Comp Neurol; 1989 Apr; 282(4):535-54. PubMed ID: 2723151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The accessory optic system of the ferret.
    Thorpe PA; Herbert J
    J Comp Neurol; 1976 Dec; 170(3):295-309. PubMed ID: 62769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal projections in the Tasmanian devil, Sarcophilus harrisii.
    Sanderson KJ; Pearson LJ; Haight JR
    J Comp Neurol; 1979 Nov; 188(2):335-45. PubMed ID: 500862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal development of primary visual projections in the tammar wallaby (Macropus eugenii).
    Wye-Dvorak J
    J Comp Neurol; 1984 Oct; 228(4):491-508. PubMed ID: 6490967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mormyrid mesencephalon. III. Retinal projections in a weakly electric fish, Gnathonemus petersii.
    Lázár G; Libouban S; Szabo T
    J Comp Neurol; 1984 Nov; 230(1):1-12. PubMed ID: 6096410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys.
    Ulinski PS; Nautiyal J
    J Comp Neurol; 1988 Oct; 276(1):92-112. PubMed ID: 3192765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal recipient nuclei in the painted turtle, Chrysemys picta: an autoradiographic and HRP study.
    Bass AH; Northcutt RG
    J Comp Neurol; 1981 Jun; 199(1):97-112. PubMed ID: 7263950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinofugal projections of the big brown bat, Eptesicus fuscus and the neotropical fruit bat, Artibeus jamaicensis.
    Cotter JR
    Am J Anat; 1985 Feb; 172(2):105-24. PubMed ID: 2983524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The organization of retinal projections to the diencephalon and pretectum in the cichlid fish, Haplochromis burtoni.
    Presson J; Fernald RD; Max M
    J Comp Neurol; 1985 May; 235(3):360-74. PubMed ID: 3998216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orderly anomalous retinal projections to the medial geniculate, ventrobasal, and lateral posterior nuclei of the hamster.
    Frost DO
    J Comp Neurol; 1981 Dec; 203(2):227-56. PubMed ID: 7309922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An autoradiographic study of the retinal projection in Xenopus laevis with comparisons to Rana.
    Levine RL
    J Comp Neurol; 1980 Jan; 189(1):1-29. PubMed ID: 7351442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative study of the relative contribution of different retinal sectors to the innervation of various thalamic and pretectal nuclei in goldfish.
    Springer AD; Mednick AS
    J Comp Neurol; 1985 Dec; 242(3):369-80. PubMed ID: 2418076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The medial geniculate body of the tree shrew, Tupaia glis. I. Cytoarchitecture and midbrain connections.
    Oliver DL; Hall WC
    J Comp Neurol; 1978 Dec; 182(3):423-58. PubMed ID: 102660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic response to optic centers to visual stimuli in the albino rat: anatomical and physiological considerations.
    Toga AW; Collins RC
    J Comp Neurol; 1981 Jul; 199(4):443-64. PubMed ID: 6168665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual system of the fossorial mole-lemmings, Ellobius talpinus and Ellobius lutescens.
    Herbin M; Repérant J; Cooper HM
    J Comp Neurol; 1994 Aug; 346(2):253-75. PubMed ID: 7962718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The connections and laminar organization ofthe optic tectum in a reptile (lguana iguana).
    Foster RE; Hall WC
    J Comp Neurol; 1975 Oct; 163(4):397-425. PubMed ID: 1176645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.