BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 6276713)

  • 1. High-affinity saxitoxin receptor sites in vertebrate heart. Evidence for sites associated with autonomic nerve endings.
    Catterall WA; Coppersmith J
    Mol Pharmacol; 1981 Nov; 20(3):526-32. PubMed ID: 6276713
    [No Abstract]   [Full Text] [Related]  

  • 2. High-STX-affinity vs. low-STX-affinity Na+ channel subtypes in nerve, heart, and skeletal muscle.
    Rogart RB
    Ann N Y Acad Sci; 1986; 479():402-30. PubMed ID: 2434005
    [No Abstract]   [Full Text] [Related]  

  • 3. Characterization of ouabain-induced noradrenaline and acetylcholine release from in situ cardiac autonomic nerve endings.
    Yamazaki T; Akiyama T; Kitagawa H; Komaki F; Mori H; Kawada T; Sunagawa K; Sugimachi M
    Acta Physiol (Oxf); 2007 Dec; 191(4):275-84. PubMed ID: 17995575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saxitoxin binding and "fast" sodium channel inhibition in sheep heart plasma membrane.
    Doyle DD; Brill DM; Wasserstrom JA; Karrison T; Page E
    Am J Physiol; 1985 Aug; 249(2 Pt 2):H328-36. PubMed ID: 2411152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium channels in vertebrate hearts. Three types of saxitoxin binding sites in heart.
    Tanaka JC; Doyle DD; Barr L
    Biochim Biophys Acta; 1984 Aug; 775(2):203-14. PubMed ID: 6087903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of voltage-dependent Na+ channels identified by high-affinity receptors for tetrodotoxin and saxitoxin in rat and human brains: quantitative autoradiographic analysis.
    Mourre C; Moll C; Lombet A; Lazdunski M
    Brain Res; 1988 May; 448(1):128-39. PubMed ID: 2455581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biochemistry of a voltage-sensitive sodium channel structure, mechanism and differentiation].
    Lazdunski M
    C R Seances Soc Biol Fil; 1982; 176(2):123-32. PubMed ID: 6284320
    [No Abstract]   [Full Text] [Related]  

  • 8. Different receptors for saxitoxin and tetrodotoxin [proceedings].
    Kao CY; Yeoh PN
    J Physiol; 1978 Nov; 284():88P-89P. PubMed ID: 731597
    [No Abstract]   [Full Text] [Related]  

  • 9. Protection by desipramine of 6-hydroxydopamine induced damage to adrenergic nerve terminals in mouse heart.
    Bonagura V; Cassebaum L; Dangman K; Freund J; Cabbat F; Dembiec D; Heikkila R; Cohen G
    Res Commun Chem Pathol Pharmacol; 1972 Jul; 4(1):163-71. PubMed ID: 4671960
    [No Abstract]   [Full Text] [Related]  

  • 10. The voltage-regulated sodium channel from the electroplax of Electrophorus electricus.
    Agnew WS; Miller JA; Ellisman MH; Rosenberg RL; Tomiko SA; Levinson SR
    Cold Spring Harb Symp Quant Biol; 1983; 48 Pt 1():165-79. PubMed ID: 6327150
    [No Abstract]   [Full Text] [Related]  

  • 11. Catecholamines associated with conductile and contractile myocardium of normal and denervated dog hearts.
    Spurgeon HA; Priola DV; Montoya P; Weiss GK; Alter WA
    J Pharmacol Exp Ther; 1974 Sep; 190(3):466-71. PubMed ID: 4412348
    [No Abstract]   [Full Text] [Related]  

  • 12. On the mechanism by which saxitoxin binds to and blocks sodium channels.
    Strichartz G; Rando T; Hall S; Gitschier J; Hall L; Magnani B; Bay CH
    Ann N Y Acad Sci; 1986; 479():96-112. PubMed ID: 2434011
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of saxitoxin-conjugated affinity gels.
    Watanabe R; Samusawa-Saito R; Oshima Y
    Bioconjug Chem; 2006; 17(2):459-65. PubMed ID: 16536478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disulfide bond reduction inhibits norepinephrine accumulation in postganglionic sympathetic nerve endings.
    Simpson LL
    J Pharmacol Exp Ther; 1982 Aug; 222(2):419-23. PubMed ID: 7097562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cardiac tetrodotoxin binding component: biochemical identification, characterization, and properties.
    Lombet A; Renaud JF; Chicheportiche R; Lazdunski M
    Biochemistry; 1981 Mar; 20(5):1279-85. PubMed ID: 6261788
    [No Abstract]   [Full Text] [Related]  

  • 16. Stabilization of a sodium channel state with high affinity for saxitoxin by intramolecular cross-linking. Evidence for allosteric effects of saxitoxin binding.
    Tejedor FJ; McHugh E; Catterall WA
    Biochemistry; 1988 Apr; 27(7):2389-97. PubMed ID: 2454655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of saxitoxin-binding sites in mammalian neural tissue.
    Ritchie JM
    Ann N Y Acad Sci; 1986; 479():385-401. PubMed ID: 2434004
    [No Abstract]   [Full Text] [Related]  

  • 18. Pharmacological properties of sodium channels in cultured rat heart cells.
    Catterall WA; Coppersmith J
    Mol Pharmacol; 1981 Nov; 20(3):533-42. PubMed ID: 6276714
    [No Abstract]   [Full Text] [Related]  

  • 19. Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle.
    Sherman SJ; Catterall WA
    J Gen Physiol; 1982 Nov; 80(5):753-68. PubMed ID: 6294222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface charges near the guanidinium neurotoxin binding site.
    Green WN; Andersen OS
    Ann N Y Acad Sci; 1986; 479():306-12. PubMed ID: 3468845
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.