These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6276829)

  • 1. Beta-adrenergic receptors in rat cerebellum after neonatal X-irradiation: effect of prolonged imipramine and lithium treatment.
    Türck M; Yeh H; Woodward DJ; Schultz JE
    Neurosci Lett; 1981 Dec; 27(3):357-62. PubMed ID: 6276829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective survival of beta 1-adenergic receptors in rat cerebellum following neonatal x-irradiation.
    Minneman KP; Pittman RN; Yeh HH; Woodward DJ; Wolfe BB; Molinoff PB
    Brain Res; 1981 Mar; 209(1):25-34. PubMed ID: 6260307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Down regulation of dihydroalprenolol and imipramine binding sites in brain of rats repeatedly treated with imipramine.
    Kinnier WJ; Chuang DM; Costa E
    Eur J Pharmacol; 1980 Oct; 67(2-3):289-94. PubMed ID: 6257531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-1 adrenergic receptors mediate noradrenergic facilitation of Purkinje cell responses to gamma-aminobutyric acid in cerebellum of rat.
    Yeh HH; Woodward DJ
    Neuropharmacology; 1983 May; 22(5):629-39. PubMed ID: 6308495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of prolonged treatment with lithium and tricyclic antidepressants on discharge frequency, norepinephrine responses and beta receptor binding in rat cerebellum: electrophysiological and biochemical comparison.
    Schultz JE; Siggins GR; Schocker FW; Türck M; Bloom FE
    J Pharmacol Exp Ther; 1981 Jan; 216(1):28-38. PubMed ID: 6256526
    [No Abstract]   [Full Text] [Related]  

  • 6. Electrophysiological and biochemical comparison of the acute and chronic effects of lithium and tricyclic antidepressants.
    Schultz JE; Siggins GR; Türck M; Bloom FE
    Adv Biochem Psychopharmacol; 1982; 31():347-57. PubMed ID: 6282062
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of combined administration of imipramine and chlorpromazine on beta- and alpha 2-adrenergic receptors in rat cerebral cortex.
    Mikuni M; Stoff DM; Meltzer HY
    Eur J Pharmacol; 1983 May; 89(3-4):313-6. PubMed ID: 6307713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of imipramine and lithium on alpha- and beta-receptor binding in rat brain.
    Rosenblatt JE; Pert CB; Tallman JF; Pert A; Bunney WE
    Brain Res; 1979 Jan; 160(1):186-91. PubMed ID: 214209
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of imipramine and adrenocorticotropin administration on the rat brain norepinephrine-coupled cyclic nucleotide generating system: alterations in alpha and beta adrenergic components.
    Duman RS; Strada SJ; Enna SJ
    J Pharmacol Exp Ther; 1985 Aug; 234(2):409-14. PubMed ID: 2991501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of effect of chronic imipramine administration on beta-adrenoceptor density on rat lymphocytes.
    Chalecka-Franaszek E; Vetulani J
    Pol J Pharmacol Pharm; 1986; 38(4):385-90. PubMed ID: 3022259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of chronic lithium treatment on rat pineal N-acetyltransferase rhythm.
    Friedman E; Yocca FD
    J Pharmacol Exp Ther; 1981 Oct; 219(1):121-4. PubMed ID: 6270296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of inhibition of cyclic AMP accumulation in brain by very low concentrations of lithium in the presence of alpha-adrenoceptor blockade.
    Mármol F; Carbonell L; Cuffí ML; Forn J
    Eur J Pharmacol; 1992 May; 226(1):93-6. PubMed ID: 1356811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of protein kinase C in the mechanism of in vitro effects of imipramine on generation of second messengers by noradrenaline in cerebral cortical slices of the rat.
    Nalepa I; Vetulani J
    Neuroscience; 1991; 44(3):585-90. PubMed ID: 1661384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of adrenocorticotropin administration on beta-adrenergic receptor adaptations in rat brain cerebral cortex.
    Duman RS; Andree T; Kendall DA; Enna SJ
    J Neurochem; 1984 Jan; 42(1):33-7. PubMed ID: 6315893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of rat brain alpha- and beta-adrenergic receptor populations by lesion of the dorsal noradrenergic bundle.
    U'Prichard DC; Reisine TD; Mason ST; Fibiger HC; Yamamura HI
    Brain Res; 1980 Apr; 187(1):143-54. PubMed ID: 6244065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-adrenergic-control of cyclic AMP-generating systems in cerebellum: pharmacological heterogeneity confirmed by destruction of interneurons.
    Hoffer BJ; Freedman R
    Exp Neurol; 1976 Jun; 51(3):653-67. PubMed ID: 179837
    [No Abstract]   [Full Text] [Related]  

  • 17. In vitro and in vivo effect of chloropromazine, imipramine and lithium chloride on monoamine oxidase activity in rat brain mitochondria.
    Nag M; Nandi N
    Biosci Rep; 1987 Sep; 7(9):701-4. PubMed ID: 2827805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium does not prevent agonist-induced subsensitivity of human adenylate cyclase.
    Zohar J; Lerer B; Ebstein RP; Belmaker RH
    Biol Psychiatry; 1982 Mar; 17(3):343-50. PubMed ID: 6282346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural adaptation in imipramine-treated rats processed in forced swim test: assessment of time course, handling, rat strain and amine uptake.
    Paul IA; Duncan GE; Kuhn C; Mueller RA; Hong JS; Breese GR
    J Pharmacol Exp Ther; 1990 Mar; 252(3):997-1005. PubMed ID: 2157002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noradrenergic and serotonergic input necessary for imipramine-induced changes in beta but not S2 receptor densities.
    Dumbrille-Ross A; Tang SW
    Psychiatry Res; 1983 Jul; 9(3):207-15. PubMed ID: 6312480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.