These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64 related articles for article (PubMed ID: 6277374)
1. The location of redox centers in biological membranes determined by resonance x-ray diffraction. II. Analysis of the resonance diffraction data. Blasie JK; Pachence JM; Tavormina A; Erecinska M; Dutton PL; Stamatoff J; Eisenberger P; Brown G Biochim Biophys Acta; 1982 Feb; 679(2):188-97. PubMed ID: 6277374 [TBL] [Abstract][Full Text] [Related]
3. The location of redox centers in biological membranes determined by resonance x-ray diffraction. I. Observation of the resonance effect. Stamatoff J; Eisenberger P; Blasie JK; Pachence JM; Tavormina A; Erecinska M; Dutton PL; Brown G Biochim Biophys Acta; 1982 Feb; 679(2):177-87. PubMed ID: 6277373 [TBL] [Abstract][Full Text] [Related]
4. Location of the heme-Fe atoms within the profile structure of a monolayer of cytochrome c bound to the surface of an ultrathin lipid multilayer film. Pachence JM; Fischetti RF; Blasie JK Biophys J; 1989 Aug; 56(2):327-37. PubMed ID: 2550089 [TBL] [Abstract][Full Text] [Related]
5. A structural investigation of cytochrome c binding to photosynthetic reaction centers in reconstituted membranes. Pachence JM; Dutton PL; Blasie JK Biochim Biophys Acta; 1983 Jul; 724(1):6-19. PubMed ID: 6307353 [TBL] [Abstract][Full Text] [Related]
6. Studies of the orientation of the mitochondrial redox carriers. III. Orientation of the gx and gy axes of the hemes of cytochrome oxidase with respect to the plane of the membrane in oriented membrane multilayers. Erecińska M; Wilson DF; Blasie JK Biochim Biophys Acta; 1979 Feb; 545(2):352-64. PubMed ID: 216401 [TBL] [Abstract][Full Text] [Related]
7. The structure of a cytochrome oxidase-lipid model membrane. Blasie JK; Erecińska M; Samuels S; Leigh JS Biochim Biophys Acta; 1978 Jan; 501(1):33-52. PubMed ID: 202314 [TBL] [Abstract][Full Text] [Related]
8. Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Pereira MM; Carita JN; Teixeira M Biochemistry; 1999 Jan; 38(4):1268-75. PubMed ID: 9930987 [TBL] [Abstract][Full Text] [Related]
9. The determination of the separate Ca2+ pump protein and phospholipid profile structures within reconstituted sarcoplasmic reticulum membranes via X-ray and neutron diffraction. Herbette L; Scarpa A; Blasie JK; Wang CT; Hymel L; Seelig J; Fleischer S Biochim Biophys Acta; 1983 May; 730(2):369-78. PubMed ID: 6133554 [TBL] [Abstract][Full Text] [Related]
10. The distance between cytochromes a and a3 in the azide compound of bovine-heart cytochrome oxidase. Goodman G; Leigh JS Biochim Biophys Acta; 1987 Mar; 890(3):360-7. PubMed ID: 3028478 [TBL] [Abstract][Full Text] [Related]
11. X-ray absorption edge studies on oxidized and reduced cytochrome c oxidase. Hu VW; Chan SI; Brown GS Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3821-5. PubMed ID: 198807 [TBL] [Abstract][Full Text] [Related]
12. Angular dependences of perpendicular and parallel mode electron paramagnetic resonance of oxidized beef heart cytochrome c oxidase. Hunter DJ; Oganesyan VS; Salerno JC; Butler CS; Ingledew WJ; Thomson AJ Biophys J; 2000 Jan; 78(1):439-50. PubMed ID: 10620307 [TBL] [Abstract][Full Text] [Related]
13. The orientation of a heme of cytochrome c oxidase in submitochondrial particles. Blum H; Harmon HJ; Leigh JS; Salerno JC; Chance B Biochim Biophys Acta; 1978 Apr; 502(1):1-10. PubMed ID: 205240 [TBL] [Abstract][Full Text] [Related]
14. Rate enhancement of the internal electron transfer in cytochrome c oxidase by the formation of a peroxide complex; its implication on the reaction mechanism of cytochrome c oxidase. Gorren AC; Dekker H; Vlegels L; Wever R Biochim Biophys Acta; 1988 Mar; 932(3):277-86. PubMed ID: 2831974 [TBL] [Abstract][Full Text] [Related]
15. A cooperative model for proton pumping in cytochrome c oxidase. Papa S; Capitanio N; Capitanio G Biochim Biophys Acta; 2004 Apr; 1655(1-3):353-64. PubMed ID: 15100051 [TBL] [Abstract][Full Text] [Related]
16. Location of high-affinity metal binding sites in the profile structure of the Ca+2-ATPase in the sarcoplasmic reticulum by resonance x-ray diffraction. Asturias FJ; Blasie JK Biophys J; 1991 Feb; 59(2):488-502. PubMed ID: 1826221 [TBL] [Abstract][Full Text] [Related]
17. [Changes in the contractibility of the cytochrome c globule during redox transition]. Kharakoz DP; Mkhitarian AG Mol Biol (Mosk); 1986; 20(2):396-406. PubMed ID: 3010083 [TBL] [Abstract][Full Text] [Related]
18. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c. Rodríguez-Marañón MJ; Qiu F; Stark RE; White SP; Zhang X; Foundling SI; Rodríguez V; Schilling CL; Bunce RA; Rivera M Biochemistry; 1996 Dec; 35(50):16378-90. PubMed ID: 8973214 [TBL] [Abstract][Full Text] [Related]
19. Electrostatic interactions of 4-carboxy-2,6-dinitrophenyllysine-modified cytochromes c with physiological and non-physiological redox partners. Rush JD; Koppenol WH Biochim Biophys Acta; 1988 Nov; 936(2):187-98. PubMed ID: 2846052 [TBL] [Abstract][Full Text] [Related]
20. Reduction of oxygen-pulsed cytochrome c oxidase by cytochrome c and other electron donors. Petersen LC; Cox RP Biochim Biophys Acta; 1980 Mar; 590(1):128-37. PubMed ID: 6243971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]