These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores. Banawas S; Korza G; Paredes-Sabja D; Li Y; Hao B; Setlow P; Sarker MR Food Microbiol; 2015 Sep; 50():83-7. PubMed ID: 25998819 [TBL] [Abstract][Full Text] [Related]
6. Purification and partial characterization of a spore cortex-lytic enzyme of Clostridium perfringens S40 spores. Miyata S; Moriyama R; Sugimoto K; Makino S Biosci Biotechnol Biochem; 1995 Mar; 59(3):514-5. PubMed ID: 7766194 [TBL] [Abstract][Full Text] [Related]
7. Purification and properties of spore-lytic enzymes from Clostridium perfringens type A spores. Gombas DE; Labbe RG J Gen Microbiol; 1985 Jun; 131(6):1487-96. PubMed ID: 2864386 [TBL] [Abstract][Full Text] [Related]
8. Energy-dependent activation of spore-lytic enzyme precursor by germinated spores of Clostridium perfringens. Ando Y; Tsuzuki T Biochem Biophys Res Commun; 1984 Sep; 123(2):463-7. PubMed ID: 6091628 [TBL] [Abstract][Full Text] [Related]
9. Physiological role of carbon dioxide in spore germination of Clostridium perfringens S40. Kato S; Masayama A; Yoshimura T; Hemmi H; Tsunoda H; Kihara T; Moriyama R J Biosci Bioeng; 2009 Dec; 108(6):477-83. PubMed ID: 19914579 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the Spore Membrane Proteome in Clostridium perfringens Implicates Cyanophycin in Spore Assembly. Liu H; Ray WK; Helm RF; Popham DL; Melville SB J Bacteriol; 2016 Jun; 198(12):1773-1782. PubMed ID: 27068591 [TBL] [Abstract][Full Text] [Related]
12. Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity. Shimamoto S; Moriyama R; Sugimoto K; Miyata S; Makino S J Bacteriol; 2001 Jun; 183(12):3742-51. PubMed ID: 11371539 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity of chemically treated spores of Clostridium perfringens type A to an initiation protein. Franceschini TJ; Labbe RG Microbios; 1979; 25(100):85-91. PubMed ID: 232233 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the germination of individual Clostridium perfringens spores and its heterogeneity. Wang G; Zhang P; Paredes-Sabja D; Green C; Setlow P; Sarker MR; Li YQ J Appl Microbiol; 2011 Nov; 111(5):1212-23. PubMed ID: 21883730 [TBL] [Abstract][Full Text] [Related]
15. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates. Udompijitkul P; Alnoman M; Banawas S; Paredes-Sabja D; Sarker MR Food Microbiol; 2014 Dec; 44():24-33. PubMed ID: 25084641 [TBL] [Abstract][Full Text] [Related]
16. Effect of the cortex-lytic enzyme SleC from non-food-borne Clostridium perfringens on the germination properties of SleC-lacking spores of a food poisoning isolate. Paredes-Sabja D; Sarker MR Can J Microbiol; 2010 Nov; 56(11):952-8. PubMed ID: 21076486 [TBL] [Abstract][Full Text] [Related]
18. Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells. Paredes-Sabja D; Sarker MR Anaerobe; 2011 Apr; 17(2):78-84. PubMed ID: 21315167 [TBL] [Abstract][Full Text] [Related]
19. Effects of wet heat treatment on the germination of individual spores of Clostridium perfringens. Wang G; Paredes-Sabja D; Sarker MR; Green C; Setlow P; Li YQ J Appl Microbiol; 2012 Oct; 113(4):824-36. PubMed ID: 22776375 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of chemical manipulation of the heat resistance of Clostridium perfringens spores. Ando Y; Tsuzuki T J Appl Bacteriol; 1983 Apr; 54(2):197-202. PubMed ID: 6303999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]