BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 6278156)

  • 1. Effect of morphine on catecholamine - stimulated cyclic AMP production in cortex slices from rats and mice.
    Slater P; Blundell C
    J Neurosci Res; 1981; 6(6):701-8. PubMed ID: 6278156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of opioid peptides on L-noradrenaline-stimulated cyclic AMP formation in homogenates of rat cerebral cortex and hypothalamus.
    Tsang D; Tan AT; Henry JL; Lal S
    Brain Res; 1978 Sep; 152(3):521-7. PubMed ID: 210878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of clonidine with pre- and post-synaptic adrenergic receptors of rat brain: effects on cyclic AMP-generating systems.
    Skolnick P; Daly JW
    Eur J Pharmacol; 1976 Sep; 39(1):11-21. PubMed ID: 183964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha 2-adrenergic receptors regulate generation of cyclic AMP in the pineal gland, but not in cerebral cortex of chick.
    Nowak JZ; Zawilska JB; Trzepizur K
    Pol J Pharmacol; 1997; 49(2-3):137-41. PubMed ID: 9437760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in beta-adrenergic regulation of cyclic AMP formation in cerebral cortical slices of the rat and spiny mouse--Acomys cahirinus.
    Chalecka-Franaszek E; Nalepa I; Vetulani J
    Pol J Pharmacol Pharm; 1990; 42(1):29-38. PubMed ID: 1980732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histaminergic and noradrenergic control of cyclic AMP formation in the pineal gland and cerebral cortex of three avian species: cock, duck, and goose.
    Nowak JZ; Woldan-Tambor A; Zawilska JB
    Pol J Pharmacol; 1998; 50(1):55-60. PubMed ID: 9662739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic thyroxine treatment of rats down-regulates the noradrenergic cyclic AMP generating system in cerebral cortex.
    Schmidt BH; Schultz JE
    J Pharmacol Exp Ther; 1985 May; 233(2):466-72. PubMed ID: 2987486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain differences in responsiveness of norepinephrine-sensitive adenosine 3',5'-monophosphate-generating systems in rat brain slices after intraventricular administration of 6-hydroxydopamine.
    Skolnick P; Daly JW
    Eur J Pharmacol; 1977 Jan; 41(2):145-52. PubMed ID: 188662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nerve degeneration by 6-hydroxydopamine on catecholamine-stimulated adenosine 3',5'-monophosphate formation in rat cerebral cortex.
    Kalisker A; Rutledge CO; Perkins JP
    Mol Pharmacol; 1973 Sep; 9(5):619-29. PubMed ID: 4363016
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of acute and continuous administration of morphine on the cyclic AMP response induced by norepinephrine in rat brain slices.
    Mehta CS; Strada SJ
    Life Sci; 1994; 55(1):35-42. PubMed ID: 8015347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of prolonged antidepressant treatment on the changes in cyclic AMP accumulation induced by excitatory amino acids in rat cerebral cortical slices.
    Pilc A; Legutko B
    Neuroreport; 1995 Dec; 7(1):85-8. PubMed ID: 8742423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supersensitivity in rat cerebral cortex: pre- and postsynaptic effects of 6-hydroxydopamine at noradrenergic synapses.
    Sporn JR; Wolfe BB; Harden TK; Molinoff PB
    Mol Pharmacol; 1977 Nov; 13(6):1170-80. PubMed ID: 201833
    [No Abstract]   [Full Text] [Related]  

  • 13. alpha2C adrenoceptors inhibit adenylyl cyclase in mouse striatum: potential activation by dopamine.
    Zhang W; Klimek V; Farley JT; Zhu MY; Ordway GA
    J Pharmacol Exp Ther; 1999 Jun; 289(3):1286-92. PubMed ID: 10336518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the forskolin-induced cyclic AMP accumulation by corticosterone.
    Czyrak A
    Pol J Pharmacol; 1996; 48(6):595-9. PubMed ID: 9112699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of vasopressin on noradrenaline-induced cyclic AMP accumulation in rat brain slices.
    Hamburger-Bar R; Newman ME
    Pharmacol Biochem Behav; 1985 Feb; 22(2):183-7. PubMed ID: 2984701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of dopaminergic transmission by thyrotropin-releasing hormone.
    Narumi S; Nagawa Y
    Adv Biochem Psychopharmacol; 1983; 36():185-97. PubMed ID: 6305147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desensitization of H2-like histamine receptors stimulating cyclic AMP formation in the chick cerebral cortex.
    Sedkowska P; Zawilska JB; Nowak JZ
    Pol J Pharmacol; 2003; 55(2):255-9. PubMed ID: 12926556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of 6-hydroxydopamine lesions on norepinephrine-induced [3H]glycogen hydrolysis in mouse cortical slices.
    Magistretti PJ; Morrison JH; Shoemaker WJ; Bloom FE
    Brain Res; 1983 Feb; 261(1):159-62. PubMed ID: 6301624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of phosphoinositide turnover in neonatal rat cerebral cortex by group I- and II- selective metabotropic glutamate receptor agonists.
    Mistry R; Golding N; Challiss RA
    Br J Pharmacol; 1998 Feb; 123(3):581-9. PubMed ID: 9504400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noradrenaline-sensitive cyclic AMP-generating system of rat cerebral cortex with iron-induced epileptiform activity.
    Hattori Y; Moriwaki A; Yasuhara H; Hori Y
    Jpn J Physiol; 1987; 37(1):161-7. PubMed ID: 2886687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.