BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 6278469)

  • 21. Scavenging effects of tetramethylpyrazine on active oxygen free radicals.
    Zhang ZH; Yu SZ; Wang ZT; Zhao BL; Hou JW; Yang FJ; Xin WJ
    Zhongguo Yao Li Xue Bao; 1994 May; 15(3):229-31. PubMed ID: 7976377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spin trapping of free radical intermediates produced during the metabolism of isoniazid and iproniazid in isolated hepatocytes.
    Albano E; Tomasi A
    Biochem Pharmacol; 1987 Sep; 36(18):2913-20. PubMed ID: 2820425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydroxyl radical formation as a result of the interaction between primaquine and reduced pyridine nucleotides. Catalysis by hemoglobin and microsomes.
    Augusto O; Weingrill CL; Schreier S; Amemiya H
    Arch Biochem Biophys; 1986 Jan; 244(1):147-55. PubMed ID: 3004336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with rat liver microsomal fractions.
    Davies MJ
    Biochem J; 1989 Jan; 257(2):603-6. PubMed ID: 2930470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The production of oxygen-centered radicals by bacillus-Calmette-Guerin-activated macrophages. An electron paramagnetic resonance study of the response to phorbol myristate acetate.
    Hume DA; Gordon S; Thornalley PJ; Bannister JV
    Biochim Biophys Acta; 1983 Oct; 763(3):245-50. PubMed ID: 6313069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers.
    Mimnaugh EG; Gram TE; Trush MA
    J Pharmacol Exp Ther; 1983 Sep; 226(3):806-16. PubMed ID: 6411900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of superoxide anion during ferrous ion-induced decomposition of linoleic acid hydroperoxide under aerobic conditions.
    Kambayashi Y; Tero-Kubota S; Yamamoto Y; Kato M; Nakano M; Yagi K; Ogino K
    J Biochem; 2003 Dec; 134(6):903-9. PubMed ID: 14769880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN; Yang MX; Lasker JM; Cederbaum AI
    Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rat liver microsomal NADPH-dependent release of iron from ferritin and lipid peroxidation.
    Thomas CE; Aust SD
    J Free Radic Biol Med; 1985; 1(4):293-300. PubMed ID: 3013980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion.
    Burk RF; Lane JM; Patel K
    J Clin Invest; 1984 Dec; 74(6):1996-2001. PubMed ID: 6511912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrobenzyl radical metabolites from microsomal reduction of nitrobenzyl chlorides.
    Moreno SN; Schreiber J; Mason RP
    J Biol Chem; 1986 Jun; 261(17):7811-5. PubMed ID: 3011800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of lipid radical formation following exposure of epidermal homogenate to ultraviolet light.
    Ogura R; Sugiyama M; Nishi J; Haramaki N
    J Invest Dermatol; 1991 Dec; 97(6):1044-7. PubMed ID: 1660908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Study of the mechanism of initiation of enzymatic NADPH-dependent lipid peroxidation in membranes of the endoplasmic reticulum].
    Kagan VE; Serbinova EA; Minin AA; Savov VM; Novikov KN
    Biokhimiia; 1985 Jun; 50(6):986-91. PubMed ID: 2992614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ferritin, a physiological iron donor for microsomal lipid peroxidation.
    Koster JF; Slee RG
    FEBS Lett; 1986 Apr; 199(1):85-8. PubMed ID: 3007217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoenhancement of lipid peroxidation associated with the generation of reactive oxygen species in hepatic microsomes of hematoporphyrin derivative-treated rats.
    Das M; Mukhtar H; Greenspan ER; Bickers DR
    Cancer Res; 1985 Dec; 45(12 Pt 1):6328-30. PubMed ID: 2998597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adriamycin-enhanced membrane lipid peroxidation in isolated rat nuclei.
    Mimnaugh EG; Kennedy KA; Trush MA; Sinha BK
    Cancer Res; 1985 Jul; 45(7):3296-304. PubMed ID: 2988766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of 3-MI-derived N-centered radicals obtained from incubation of 3-MI with microsomal-NADPH system by EPR-HPLC spin trapping.
    Chen G; Janzen EG; Bray TM
    Free Radic Biol Med; 1994 Jul; 17(1):19-25. PubMed ID: 7959163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on the metal-ion and lipoxygenase-catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy.
    Davies MJ; Slater TF
    Biochem J; 1987 Jul; 245(1):167-73. PubMed ID: 2822013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic stability of superoxide and hydroxyl radical adducts of a cyclic nitrone toward rat liver microsomes and cytosol: A stopped-flow ESR spectroscopy study.
    Bézière N; Frapart Y; Rockenbauer A; Boucher JL; Mansuy D; Peyrot F
    Free Radic Biol Med; 2010 Aug; 49(3):437-46. PubMed ID: 20452418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of hydroxyl radicals during the enzymatic reductions of the Fe3+-ADP-phosphate-adriamycin and Fe3+-ADP-EDTA systems. Less involvement of hydroxyl radical and a great importance of proposed perferryl ion complexes in lipid peroxidation.
    Sugioka K; Nakano H; Nakano M; Tero-Kubota S; Ikegami Y
    Biochim Biophys Acta; 1983 Oct; 753(3):411-21. PubMed ID: 6311278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.